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Tabulating data in R is both, trivial and complicated. After all it is just about counting data. 
But the underlying data structures are diverse and technically abstract, especially when 
there are more than two dimensions involved. Thus, there are many functions to handle and 
process tables in the respective representation, which makes the situation somewhat 
confusing. And then there are some gaps in base R function list that are filled by DescTools. 
This document aims to briefly summarise, how to create, manipulate and describe count data 
in tables. Some examples from the SAS-documentation FREQ are reproduced.  
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1 Starting Point 

The analysis of categorical data usually starts with tables. In R we have a comprehensive (but 
not complete) toolset to work with tables of two and more dimensions. Thus, there’s room 
for extensions with functions useful in the analyst’s daily life. The package DescTools 
contains a fair number of additional functions, which are described in this document. 
 
The first question is how categorical data is technically organised. Normally it will be given 
in one of the following three data structures.  
 
A) Single case B) Frequency C) Table 

The raw data in form of a data 
frame (or a matrix), each row 
contains one case, here one 
person: 

Unique combinations of factors 
extended with their counts, 
often called weights (column 
“Freq”): 

A multidimensional table  
(or an array, matrix): 
 

Untable(UCBAdmissions) 
 
        Admit Gender Dept 
1    Admitted   Male    A 
2    Admitted   Male    A 
3    Admitted   Male    A 
4    Admitted   Male    A 
5    Admitted   Male    A 
6    Admitted   Male    A 
7    Admitted   Male    A 
... 
 
511  Admitted   Male    A 
512  Admitted   Male    A 
513  Rejected   Male    A 
514  Rejected   Male    A 
 
... 

data.frame(UCBAdmissions) 
 
      Admit Gender Dept Freq 
1  Admitted   Male    A  512 
2  Rejected   Male    A  313 
3  Admitted Female    A   89 
4  Rejected Female    A   19 
5  Admitted   Male    B  353 
6  Rejected   Male    B  207 
7  Admitted Female    B   17 
8  Rejected Female    B    8 
9  Admitted   Male    C  120 
10 Rejected   Male    C  205 
11 Admitted Female    C  202 
12 Rejected Female    C  391 
12 Rejected Female    C  391 
 
... 

UCBAdmissions 
 
, , Dept = A 
 
          Gender 
Admit      Male Female 
  Admitted  512     89 
  Rejected  313     19 
 
, , Dept = B 
 
          Gender 
Admit      Male Female 
  Admitted  353     17 
  Rejected  207      8 
 
, , Dept = C 
... 

Either we have the raw data arranged case-by-case in a data frame (case A). Then a 
contingency table can be built by tabulating the data. There are several commands for this 
described in chapter “Tabulate”.  
Or the data are given as a combination of factor levels and one count variable (typically 
organized as a data frame too) (case B). The first line in this representation means, that we 
have 512 men admitted to department A in our sample. This corresponds to the cell [1, 1, 1] 
in the representation C). In representation A we would have 512 rows with the exactly same 
content, namely Admitted/Male/A.  
How to directly create such a structure is described in “Expanding”. There are functions to 
convert this structure to a table or to recreate the raw dataset. This is detailed in the chapter 
“Convert”. 
When the data are given directly as a table (case C), there are again several ways how to 
enter that into R. This is the content of the first chapter “Create tables”.  
How to process tables is described in the chapters “Reorganize”, “Aggregate”, “Append”, 
“Convert”. 
 
Usually B) will be the most economic representation of frequency data whereas the case-by-
case form in A) is the least (provided the data set is purely categorical). The built-in data sets 
from the R base system that are purely categorical usually come in the form of tables (C). 
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2 Create Table 

2.1 Creating from the scratch 

There are several ways to enter contingency table data into R. Let’s illustrate here some 
approaches with a table concerning party affiliation by gender: 
 
 

Gender	 Party	

 Democrat Independent Republican 

M 762 327 468 
F 484 239 477 

 
 
 
The first approach uses the function rbind and builds a matrix row by row. The as.table() 
function lets R know that the matrix represents a contingency table of counts: 
 
tab <- as.table(rbind(c(762, 327, 468), c(484, 239, 477))) 
dimnames(tab) <- list(gender = c("M", "F"), 
                      party  = c("Democrat", "Independent", "Republican")) 
tab 
 
##      party 
## gender Democrat Independent Republican 
##     M      762         327        468 
##     F      484         239        477 
  

The exactly same result can be created by the second approach, using the function matrix. 
Note that, by default, matrix() uses the elements supplied by columns in the result, unless 
you specify byrow=TRUE.  
 
as.table(matrix(c(762, 327, 468, 484, 239, 477), nrow=2, byrow=TRUE, 
                dimnames=list(gender= c("M", "F"), 
                              party = c("Democrat", "Independent", "Republican")))) 
 
 
 
The third way uses TextToTable to convert a text to a table. Within this function 
read.table is used to enter the data and to convert the data frame to a table.  header=TRUE  
will take the names of the variables from its first line.  
 
The column names and row names will automatically be chosen, if the first row contains one 
fewer field than the number of columns. The dimension names can be provided with the 
specific argument:  
 
txt <- " 
   Democrat, Independent, Republican 
M, 762, 327, 468 
F, 484, 239, 477" 
 
TextToTable(txt, sep=",", dimnames=c("gender", "party")) 

rbind
as.table 

TextToTable

matrix

Table	2.1    Tabulating 
Party versus Gender, 
Agresti (2007) p. 39 
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Higher dimensional arrays can be defined with the function array by using the argument 
dim: 
 
salary <- array( 
      c(38, 12, 102, 141, 12, 9, 136, 383), 
      dim=c(2, 2, 2), 
      dimnames=list(exposure = c("exposed", "not"),  
                    disease  = c("case", "control"), 
                    salary   = c("<1000", ">=1000")) 
                    ) 

 
 
Note how the dimensions are organised:  
   The first dimension corresponds to the rows,  
   the second to the columns, the third to the depth, and so on. 
 

Figure	2.1    3-dimensional table 

 
 
Higher dimensional tables condensed in flat tables with more than one column, resp. row 
variable, can be created from the appropriate text chunk by means of the base function 
read.ftable. (Beware not to insert spaces at the beginning of the lines.) 
 
txt <-  
"          Sex  Male                  Female                  
           Eye Brown Blue Hazel Green  Brown Blue Hazel Green 
Hair                                                     
Black        32   11    10     3     36    9     5     2 
Brown        53   50    25    15     66   34    29    14 
Red          10   10     7     7     16    7     7     7 
Blond         3   30     5     8      4   64     5     8 
" 
tab <- as.table(read.ftable(textConnection(txt))) 

 
 
 
 
2.2 Building categories from a numeric variable 

When a numeric variable has to be cut into intervals there’s the function hist() for creating 
a histogram. The DescTools function Freq() is designed to give the numeric representation 
of a histogram. It displays the frequencies and the percentages of a binned variable with the 
same default logic as hist(). The single and cumulative frequencies values are reported. 
 
Freq(d.pizza$temperature) 
 
##      level freq   perc cumfreq cumperc 
## 1  [15,20]    3   0.3%       3    0.3% 
## 2  (20,25]   30   2.6%      33    2.8% 
## 3  (25,30]   58   5.0%      91    7.8% 
## 4  (30,35]   48   4.1%     139   11.9% 
## 5  (35,40]  100   8.5%     239   20.4% 
## 6  (40,45]  130  11.1%     369   31.5% 
## 7  (45,50]  219  18.7%     588   50.3% 
## 8  (50,55]  268  22.9%     856   73.2% 
## 9  (55,60]  241  20.6%    1097   93.8% 
## 10 (60,65]   73   6.2%    1170  100.0% 

  
hist(d.pizza$temperature) 

Figure	2.2   Histogram of a numeric variable. 

 
   

, , salary = >=1000 
 
         disease 
exposure  case control 
  exposed   12     136 
  not        9     383 

, , salary = <1000 
 
         disease 
exposure  case control 
  exposed   38     102 
  not       12     141 1 

2 

3 

dim

array

read.ftable

Freq

hist
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2.3 Expanding 

For small frequency tables, it is often convenient to enter them in frequency form using 
expand.grid() for the factors and c() to list the counts in a vector.  
 
tab <- data.frame(expand.grid( 
   Hair  = c("Black", "Brown", "Red", "Blond"), 
   Eye   = c("Brown", "Blue", "Hazel", "Green"), 
   Sex   = c("Male", "Female")), 
   count = c(32,53,10,3,11,50,10,30,10,25,7,5,3,15,7,8, 
             36,66,16,4,9,34,7,64,5,29,7,5,2,14,7,8) ) 
 

expand.grid will create all the interactions between the given  
factors, whereas the first factors vary fastest. data.frame will  
bind them with the count variable, denominating the number of observations. This will be a 
type B representation of count data, which can be converted with xtabs to a table. (See 
Chapter “Convert”) 
 
 
2.4 SAS datalines 

Longstanding predominance of SAS entails, that small data tables in examples and 
documents are often reported in the SAS datalines format. Creating a table based on this in R 
is not straight forward, as there might be more than one case per row (as in the example 
below). 
The function ParseSASDatalines parses the syntax and creates a table named after the 
data statement, using given column names (specified by the keyword input). 
 
ParseSASDatalines(" 
  data SummerSchool; 
  input Gender $ Internship $ Enrollment $ Count @@; 
  datalines; 
  boys  yes yes 35  boys  yes no 29 
  boys   no yes 14  boys   no no 27 
  girls yes yes 32  girls yes no 10 
  girls  no yes 53  girls  no no 23 
;") 
 

The command above will directly (and silently) create a new data object named 
SummerSchool in the GlobalEnvironment. 
 
 
 

3 Tabulate 

The built-in data set HairEyeColor has the class table. Let’s turn this table into a case-by-case 
data frame as a base for the subsequent analysis. Untable does this job. 
 
d.col <- Untable(HairEyeColor) 
head(d.col, 3) 
 
## Hair   Eye  Sex 
## 1 Black Brown Male 
## 2 Black Brown Male 
## 3 Black Brown Male 
 

From here we can start tabulating again. The simplest case is to tabulate a single vector. The 
function table yields the absolute frequencies and prop.table the proportions: 
 
table(d.col$Hair) 
 
## Black Brown   Red Blond  
##   108   286    71   127 

 
prop.table(table(d.col$Hair)) 
 
##    Black     Brown       Red     Blond  
## 0.1824324 0.4831081 0.1199324 0.2145270 

 

  

ParseSAS‐
   Datalines 

Untable

expand.grid

table
prop.table 
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A combination of both extended with the cumulative sums for both, absolute and relative 
frequencies, can be produced by Freq (here ordered by decreasing frequency): 
 
Freq(d.col$Hair, ord="desc") 
 
##    level  freq   perc  cumfreq  cumperc 
## 1  Brown   286  48.3%      286    48.3% 
## 2  Blond   127  21.5%      413    69.8% 
## 3  Black   108  18.2%      521    88.0% 
## 4    Red    71  12.0%      592   100.0% 
 

By means of the table function we can produce multidimensional contingency tables (aka. 
crosstabs) as well. We use the command with here, so we can avoid having to qualify every 
column name with the name of the data.frame (which makes the code more readable). 
 
with(d.col, table(Hair, Eye)) 
 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    68   20    15     5 
##   Brown   119   84    54    29 
##   Red      26   17    14    14 
##   Blond     7   94    10    16 

 
The first entered variable will be the row variable, the second one the column variable. 
Missing values are ignored by default. In order to include NA as a category in counts, use the 
option useNA="always". 
A relative frequency table can be produced using the function prop.table, which takes a 
table object as argument: 
 
with(d.col, prop.table(table(Hair, Eye), margins=NULL)) 
 
##        Eye 
## Hair          Brown        Blue       Hazel       Green 
##   Black 0.114864865 0.033783784 0.025337838 0.008445946 
##   Brown 0.201013514 0.141891892 0.091216216 0.048986486 
##   Red   0.043918919 0.028716216 0.023648649 0.023648649 
##   Blond 0.011824324 0.158783784 0.016891892 0.027027027 
 

The function PercTable combines that and allows adding marginal sums in one step:  
 
PercTable(Hair ~ Eye, data=d.col, rfrq="111", margins=c(1,2)) 
 
##         Eye     Brown   Blue   Hazel   Green    Sum 
## Hair                                                
##                                                     
## Black   freq       68     20      15       5    108 
##         perc    11.5%   3.4%    2.5%    0.8%  18.2% 
##         p.row   63.0%  18.5%   13.9%    4.6%      . 
##         p.col   30.9%   9.3%   16.1%    7.8%      . 
##                                                     
## Brown   freq      119     84      54      29    286 
##         perc    20.1%  14.2%    9.1%    4.9%  48.3% 
##         p.row   41.6%  29.4%   18.9%   10.1%      . 
##         p.col   54.1%  39.1%   58.1%   45.3%      . 
##                                                     
## Red     freq       26     17      14      14     71 
##         perc     4.4%   2.9%    2.4%    2.4%  12.0% 
##         p.row   36.6%  23.9%   19.7%   19.7%      . 
##         p.col   11.8%   7.9%   15.1%   21.9%      . 
##                                                     
## Blond   freq        7     94      10      16    127 
##         perc     1.2%  15.9%    1.7%    2.7%  21.5% 
##         p.row    5.5%  74.0%    7.9%   12.6%      . 
##         p.col    3.2%  43.7%   10.8%   25.0%      . 
##                                                     
## Sum     freq      220    215      93      64    592 
##         perc    37.2%  36.3%   15.7%   10.8% 100.0% 
##         p.row       .      .       .       .      . 
##         p.col       .      .       .       .      . 

Freq

PercTable
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There are more options, as expected values or standard residuals, which can optionally be 
integrated.  
 
The marginal tables can be produced by R base function margin.table or by the somewhat 
extended function Margins in DescTools: 
 
Margins(tab, ord="desc") 
 
## $Hair 
##   level freq  perc cumfreq cumperc 
## 1 Brown  286 0.483     286   0.483 
## 2 Blond  127 0.215     413   0.698 
## 3 Black  108 0.182     521   0.880 
## 4   Red   71 0.120     592   1.000 

 

 
 
 
## $Eye 
##   level freq  perc cumfreq cumperc 
## 1 Brown  220 0.372     220   0.372 
## 2  Blue  215 0.363     435   0.735 
## 3 Hazel   93 0.157     528   0.892 

## 4 Green   64 0.108     592   1.000 

 

table does not come with a formula interface, but the xtabs function does. This allows us to 
create multidimensional crosstabulations using formula style input. The result is a 
contingency table in array format, whose dimensions are determined by the terms on the 
right side of the formula. 
 
 

4 Reorganize 

Say we created a three dimensional table with Hair, Eye and Sex as variables and typically got 
a 3-dim array as result. This will be displayed as: 
 
(tab <- with(d.col, table(Hair, Eye, Sex))) 
 
## , , Sex = Male 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    32   11    10     3 
##   Brown    53   50    25    15 
##   Red      10   10     7     7 
##   Blond     3   30     5     8 
 
 

 
 
##, , Sex = Female 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8 
##

 
To combine this multidimensional structure into a flat table while preserving all the details, 
there’s the function ftable. The variables to be placed in the rows can be defined by the 
argument row.vars, which can be a vector (denoting multiple dimensions) containing the 
dimension numbers or the names, if there are any defined.  
So to put Eye (variable 2) and Sex (variable 3) in the rows and Hair as column variable, we 
can use both, subscripts or dimension names, writing  
 
ftable(tab, row.vars = c(2, 3)) 
ftable(tab, row.vars = c("Eye", "Sex")) 
 
##              Hair Black Brown Red Blond 
## Eye   Sex                               
## Brown Male           32    53  10     3 
##       Female         36    66  16     4 
## Blue  Male           11    50  10    30 
##       Female          9    34   7    64 
## Hazel Male           10    25   7     5 
##       Female          5    29   7     5 
## Green Male            3    15   7     8 
##       Female          2    14   7     8 
 

  

Margins

ftable
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The tab, as we constructed it, has the Hair as rows (1), the Eye as columns (2), and the Sex as 
third dimension (3) defined. The dimensions and dimension names follow the defined order: 
 
dimnames(tab) 
 
## $Hair 
## [1] "Black" "Brown" "Red"   "Blond" 
## 
## $Eye 
## [1] "Brown" "Blue"  "Hazel" "Green" 
## 
## $Sex 
## [1] "Male"   "Female" 
 

If we have to change the order of the dimensions, we can make use of the base-R function 
aperm. Let’s say we wanted Eye as row variable and Sex a column variable and consequently 
Hair as 3th variable, we can tell aperm to set dimension 2 on the first position, 3 on the 
second and 1 on the third position. So we get: 
 
aperm(tab, c(2,3,1)) 
 
##, , Hair = Black 
## 
##        Sex 
## Eye     Male Female 
##   Brown   32     36 
##   Blue    11      9 
##   Hazel   10      5 
##   Green    3      2 
## 

 

 
 
##, , Hair = Brown 
## 
##        Sex 
## Eye     Male Female 
##   Brown   53     66 
##   Blue    50     34 
## 

... 
 
The following would by the way not work: 
 
tab["Eye", "Sex", "Hair"] 
Error in tab["Eye", "Sex", "Hair"] : subscript out of bounds 

 
 
To reorder the sequence of the levels (within a dimension) in our table, we could use 
reorder.factor. Say we would like to have the sequence Blue, Green, Hazel, Brown for the 
Eye colour. Of course, when having the raw data, we would use  

factor(d.col$Eye, levels=c("Blue", "Green", "Hazel", "Brown")) 

and any table afterwards would inherit this level order. But how can we change this in an 
already created table? The answer is obvious (but may yet be unexpected in this context): 
Use the subscript! This works with the level names as well as with the index positions.  
 
 
tab[ , c("Blue", "Green", "Hazel", "Brown"), ] 
 
## , , Sex = Male 
## 
##        Eye 
## Hair    Blue Green Hazel Brown 
##   Black   11     3    10    32 
##   Brown   50    15    25    53 
##   Red     10     7     7    10 
##   Blond   30     8     5     3 
## 
 

 
 
## , , Sex = Female 
## 
##        Eye 
## Hair    Blue Green Hazel Brown 
##   Black    9     2     5    36 
##   Brown   34    14    29    66 
##   Red      7     7     7    16 
##   Blond   64     8     5     4 

 
 

 
For simply reversing the levels there’s the function Rev, which has a table interface 
implemented. The function accepts a margins argument, defining the dimensions whose 
levels should be reversed. Compare the reversed levels of Hair and Sex: 
 

aperm

Rev
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tab 
 
## , , Sex = Male 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    32   11    10     3 
##   Brown    53   50    25    15 
##   Red      10   10     7     7 
##   Blond     3   30     5     8 
## 
## , , Sex = Female 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8 
 

Rev(tab, margin = c(1, 3)) 
 
## , , Sex = Female 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Blond     4   64     5     8 
##   Red      16    7     7     7 
##   Brown    66   34    29    14 
##   Black    36    9     5     2 
## 
## , , Sex = Male 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Blond     3   30     5     8 
##   Red      10   10     7     7 
##   Brown    53   50    25    15 
##   Black    32   11    10     3 

Renaming level names can be achieved by refining the dimension names. 

dimnames(tab)$Sex <- c("men", "women") 

 
 

5 Aggregate 

Sometimes we might want to aggregate an existing table along one or several dimensions. 
Say we’d like to get rid of the Hair dimension but retain all the frequency information for the 
other dimensions. For this we can use apply as we would in the case of a matrix. The 
function takes vectors as well for the margins. The order of the subscripts specified in the 
apply statement determines the order of the subscripts in the result. 
So, if we sum up all cases along the 1st dimension (Hair) and retain the other two (2, 3) we 
would get: 
 
apply(tab, c(2,3), sum) 
 
##        Sex 
## Eye     Male Female 
##   Brown   98    122 
##   Blue   101    114 
##   Hazel   47     46 
##   Green   33     31 
 

 
apply(tab, 1, sum) 
 
## Black Brown   Red Blond  
##   108   286    71   127 

This works with the dimension names too: apply(tab, c("Eye", "Sex")) will deliver the 
same result. 
Single margins could be calculated correspondingly, as demonstrated above. 
 
If tab was created with xtabs, it can be aggregated directly by using the formula interface, 
which typically is clearer and more readable.  
 
xtab <- xtabs(~., d.col) 
xtabs(Freq ~ Eye + Sex, xtab) 
 
##       Sex 
## Eye     Male Female 
##   Brown   98    122 
##   Blue   101    114 
##   Hazel   47     46 
##   Green   33     31 

 
If we want to combine some levels, we can with CollapseTable. Say we want to fuse brown 
and hazel eyes to a new category Browny, as well as just having two groups of Hair, namely 
Dark and Fair: 
 
   

apply

xtabs

CollapseTable
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CollapseTable(tab, Eye=c("Browny","Blue","Browny","Green"),  
                   Hair=c("Dark","Dark","Fair","Fair")) 
 
## , , Sex = Male 
## 
##       Eye 
## Hair   Browny Blue Green 
##   Dark    120   61    18 
##   Fair     25   40    15 

 

 
 
##, , Sex = Female 
## 
##       Eye 
## Hair   Browny Blue Green 
##   Dark    136   43    16 

##   Fair     32   71    15 

 
 
 

6 Append 

Sometimes we need to paste tables together, for instance when two tables of the same 
dimension should be put together to a 3-dimensional array. In contrast to the 2-dimensional 
case, where the functions rbind and cbind exist, base R does not contain a respective 
function for higher dimensional tables. In DescTools there’s the function Abind included for 
this purpose (indeed borrowed from the abind package). 
 
a <- HairEyeColor[,,1]     # male table 
b <- HairEyeColor[,,2]     # female table 
 
Abind(Male=a, Female=b, along=3) 
 
## , , Male 
## 
##       Brown Blue Hazel Green 
## Black    32   11    10     3 
## Brown    53   50    25    15 
## Red      10   10     7     7 
## Blond     3   30     5     8 
## 

 
 
## , , Female 
## 
##       Brown Blue Hazel Green 
## Black    36    9     5     2 
## Brown    66   34    29    14 
## Red      16    7     7     7 
## Blond     4   64     5     8 

 
The first step separates the table for males from the females. Abind reverses this step and 
binds the two tables together again. This can happen along all possible dimensions.  
In the example above a new dimension is introduced by setting along = 3.   
Abind(a,b,along=2) would bind the tables by columns (as cbind does), whereas 
Abind(a,b,along=1) would give the same result as rbind(a,b). 
 
 
 
 

7 Convert 

Time and again newbies wonder how to convert tables from one to the other form. Base R 
comprises most of the required functions, but not quite all.  
Let’s say we have the three forms of table given as: 

A) d.col <- Untable(HairEyeColor)   # case-by-case  
B) d.weight <- as.data.frame(HairEyeColor) # frequency  
C) tab <- HairEyeColor    # table  

 
 
The conversions can be made as follows. 
 

Abind
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ca
se

-b
y-

ca
se

 
 fr

eq
ue

nc
y 

 ta
bl

e 

  

A) B) 1) as.data.frame(table(d.col))  

2) aggregate(rep(1, nrow(d.col)),  

             by=d.col, FUN=length) 

This is actually A) to C) to B)! 
Solution 2) will yield the 
nonzero entries only. 

A) B) Untable(d.weight) library(DescTools) 

A)   C) table(d.col)  

A)  C) Untable(tab)  

 B) C) xtabs(Freq ~ ., d.weight)  

 B) C) as.data.frame(tab) If tab is defined as matrix, 
as.data.frame has to be 
specified explicitly as 
as.data.frame.table! 

 
 
The conversion of an xtabs object to a matrix would normally not be carried out in base R. 
The class would remain (“xtabs”, “table”) after calling the as.matrix() function. All 
attributes won’t be touched as well. 
 
str(as.matrix(htab)) 
##  xtabs [1:2, 1:7] 119 1070 16 60 12 14 7 4 3 0 ... 
##  - attr(*, "dimnames")=List of 2 
##   ..$ race : chr [1:2] "Black" "White" 
##   ..$ nvics: chr [1:7] "0" "1" "2" "3" ... 
##  - attr(*, "class")= chr [1:2] "xtabs" "table" 
##  - attr(*, "call")= language xtabs(formula = freq ~ race + nvics,  
          data = homicide) 
 

We hold the view that if we order a matrix with as.matrix(), we should receive one (and 
nothing else). DescTools will add an xtabs interface for as.matrix() such, that the class and 
call attributes will be adapted. 
 
library(DescTools) 
 
str(as.matrix(htab)) 
##  num [1:2, 1:7] 119 1070 16 60 12 14 7 4 3 0 ... 
##  - attr(*, "dimnames")=List of 2 
##   ..$ race : chr [1:2] "Black" "White" 
##   ..$ nvics: chr [1:7] "0" "1" "2" "3" ... 

 
 
 

8 Print and Format 

All table connected classes have their print methods which do not call for any further 
explanation. There are several approaches out there, how to turn tables into XML, HTML or 
LATEX. DescTools contains two functions for sending tables to MS-Word. WrdTable would 
create the table in Word and transfer the cell information appropriately. 
 
Let’s create an artificial table, with one cell being 0 and one being NA. Then we format the 
counts with a big.mark and set 0 digits. The zero values should be expressed as “-“ and the 
NAs as “missing”. Finally, all should be aligned to the right. 
 
(tab <- as.table(matrix(c(2000, 0, 34, NA), nrow=2))) 
##      A    B 
## A 2000   34 
## B    0      
   

as.data.frame
 
aggregate 
 
Untable 
 
xtabs 
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tab[] <- Format(tab, big.mark = "'", digits=0, zero.form="-", na.form="Missing") 
tab[] <- StrAlign(tab, "\\r")   # right alignement 
tab 
 
##         A       B 
## A   2'000      34 
## B       - Missing 
 

The counts and percentages in PercTable can be formatted by setting the options fmt.abs 
and fmt.per. The percentages are formatted as .000 and the counts with a space for 
big.mark. 
 
options(fmt.abs=structure(list(digits=1, big.mark=" "), class="fmt")) 
options(fmt.per=structure(list(digits=3, leading="drop"), class="fmt")) 
PercTable(tab) 
         
##               A       B 
##                         
## A freq  2 000.0    34.0 
##   perc     .720    .012 
##                         
## B freq      0.0   745.0 
##   perc     .000    .268 
 

Note that by applying formats to the cells, the numeric values turn to strings and cannot be 
subsequently used for further calculating. 
 
FixToTab is trying to chop the fixed font output of a table given as text to a tab delimited 
table.  
 
 

9 Export 

DescTools contains functions for exporting tables to Word or Excel. Exporting to Excel would 
at least handle “ftables” adequately.  
 
tab <- ftable(HairEyeColor, col.vars = c("Sex", "Hair")) 
XLView(tab) 
 

 
	
Figure	9.1    Excel sheet containing exported table from R. 

 
The Word-Interface is already somewhat more elaborated (but still unsatisfactory): 
 
ToWrd (tab, wrd=GetNewWrd()) 

 

Sex  Male      Female  

        Hair 
Eye  

Black  Brown  Red  Blond Black Brown Red Blond 

Brown  32  53  10  3 36 66 16 4 
Blue  11  50  10  30 9 34 7 64 
Hazel  10  25  7  5 5 29 7 5 
Green  3  15  7  8 2 14 7 8 

Format

XLView

WrdTab
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10 Plot 

The usual graphical representation of a table is a mosaicplot. Such a plot will display the 
conditional frequencies in two directions. (Note that the important encoding is length.)  
 
tab <- as.table(apply(HairEyeColor, c(1,2), sum)) 
tab <- tab[,c("Brown","Hazel","Green","Blue")] 
cols <- SetAlpha(c("sienna4", "burlywood", "chartreuse3", "slategray1"), 0.6) 
 
PlotMosaic(tab, col=cols, main = "Hair ~ Eye") 
 

This will display the following fact: 
 
 
 
 
PercTable(tab, freq=FALSE, rfrq="010") 
 
##       Eye 
##        Brown Hazel Green  Blue 
## Hair                           
## Black  63.0% 13.9%  4.6% 18.5% 
## Brown  41.6% 18.9% 10.1% 29.4% 
## Red    36.6% 19.7% 19.7% 23.9% 
## Blond   5.5%  7.9% 12.6% 74.0% 
 
prop.table(margin.table(tab, 1)) 
## Hair 
##  Black   Brown     Red   Blond  
## 0.1824  0.4831  0.1199  0.2145 

 

Figure	10.1    Mosaicplot of  Hair colour ~ Eye colour. 

 
The plot makes the story quite visible! About half of the sample has brown hair, red is the 
less frequent hair colour observed (~5-10%). Within the black-haired people more than 
50% have brown eyes.  Blond people tend to have blue eyes. The percentage of green-eyed 
people is biggest within red haired guys, but with 20% not as pronounced as maybe 
expected. And so on. 
The mosaicplot has an order. At first the hair colour is split and afterwards, within the single 
hair colour, the eye colour. This corresponds to a relationship Hair ~ Eye. If the inverse 
relation is the interesting one, the table can simply be transposed. This side of the coin then 
looks like (the colours are coding the dependent variable, here “Hair”): 
 
cols <- SetAlpha(c("moccasin", "salmon1", "wheat3", "gray32"), 0.8) 
PlotMosaic(tab, col=cols, main = "Hair ~ Eye", horiz = FALSE) 
 

 
Figure	10.2    Mosaicplot of  Eye colour ~ Hair colour. 
 

 
PercTable(tab, freq=FALSE, rfrq="001") 
 
##       Eye 
##        Brown Hazel Green  Blue 
## Hair                           
## Black  30.9% 16.1%  7.8%  9.3% 
## Brown  54.1% 58.1% 45.3% 39.1% 
## Red    11.8% 15.1% 21.9%  7.9% 
## Blond   3.2% 10.8% 25.0% 43.7% 
 
prop.table(margin.table(tab, 2)) 
## Eye 
##  Brown  Hazel  Green   Blue  
## 0.3716 0.1571 0.1081 0.3632 

 
 

PlotMosaic
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Another – rather new – idea is to describe proportions in circles. It emphasises the 
association structure of the data. The left side of the circle represents the rows, say the hair 
colour, and the right one the columns, thus the eye colour. The advantage is that we see both 
marginal densities in the plot. 
 
 
	

	
	
Figure	10.3   Circular plot of HairEyeColor. 
 

 
 
 
 
cols <- c("moccasin", "salmon1",  
          "wheat3", "gray32", 
          "slategray1", "chartreuse3", 
          "burlywood", "sienna4") 
 
PlotCirc(t(tab), acol=cols) 

Looking at the blue eyes first of all we notice, that roughly a third of the sample has blue 
eyes. Within those, about 40% have blond hair, 10% red hair, 40% brown hair and again 
10% black hair. When we follow the band from the blue eyed to the blond haired, we notice 
that blue eyed people form ~75% of the blond-haired group. 
Obviously, we see more (conditional) proportions in a circular plot than on a mosaic plot. A 
disadvantage is that angles are nowhere near as good to compare as the lengths in the 
mosaic. 
 
 
 

11 Save 

For saving the table, there’s the usual R-base command: 
 
save(tab, file = "HairEyeColor.rda") 
 

 

 

12 Descriptions, Statistics and Tests 

Let’s create a 2-dimensional table and describe it with some bells and whistles. The 
argument verbose = high will maximize the volume of output: 
 
# aggregate 3-d table to Eye and Hair colour only: 
tab <- as.table(apply(HairEyeColor, c(2,3), sum))  
 
# order the levels along colours: 
tab <- tab[c("Brown","Hazel","Green","Blue"),] 
 
   

PlotCirc

Eye Hair 

save
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# describe the table 
Desc(tab, verbose="high") 
 
## Summary:  
## n: 592, rows: 4, columns: 2 
##  
## Pearson's Chi-squared test: 
##   X-squared = 1.5298, df = 3, p-value = 0.6754 
## Pearson's Chi-squared test (cont. adj): 
##   X-squared = 1.5298, df = 3, p-value = 0.6754 
## Likelihood Ratio: 
##   X-squared = 1.5294, df = 3, p-value = 0.6755 
## Mantel-Haenszel Chi-squared: 
##   X-squared = 0.2438, df = 1, p-value = 0.6214 
                                  

 

 

 

   

The first line reports the total n in the table and the dimension, so we have 592 Persons in a 
table with 4 rows and two columns. Then several Chi-Square-tests are calculated. The null 
hypothesis is that the eye colour is not associated with the sex. The small value of the 
2-statistic, 1.5298, and the p-value of 0.6754 indicate that the null hypothesis can’t be 
rejected at the 0.05 level of significance. Thus, we would conclude that the observation does 
not indicate an association between eye colour and sex of the person. 
The Pearson 2-statistic involves the differences between the observed cell frequencies and 
the expected deviation-frequencies. Following a rule of thumb the expected frequency in 
every cell of the table should not be less than 5. R will print a message, if this condition is 
violated.  
The continuity-adjusted 2-test statistic consists of the Pearson 2 modified with an 
adjustment for continuity. As the sample size increases, the difference between the 
continuity-adjusted and Pearson 2 decreases. Thus, in very large samples (as we have here) 
the two statistics are almost the same. This test statistic is also an alternative to Pearson’s 2 
if any of the expected values in a 2x2 table are less than 5. Some prefer to use the continuity-
adjusted 2-statistic when the sample size is small regardless of the expected values.  
 
 
##              Sex 
##                Male Female    Sum 
## Eye                               
## Brown freq       98    122    220 
##       perc    16.6%  20.6%  37.2% 
##       p.row   44.5%  55.5%      . 
##       p.col   35.1%  39.0%      . 
##                                   
## Hazel freq       47     46     93 
##       perc     7.9%   7.8%  15.7% 
##       p.row   50.5%  49.5%      . 
##       p.col   16.8%  14.7%      . 
##                                   
## Green freq       33     31     64 
##       perc     5.6%   5.2%  10.8% 
##       p.row   51.6%  48.4%      . 
##       p.col   11.8%   9.9%      . 
##                                   
## Blue  freq      101    114    215 
##       perc    17.1%  19.3%  36.3% 
##       p.row   47.0%  53.0%      . 
##       p.col   36.2%  36.4%      . 
##                                   
## Sum   freq      279    313    592 
##       perc    47.1%  52.9% 100.0% 
##       p.row       .      .      . 
##       p.col       .      .      . 
 

 
 
The expected frequencies can be obtained by using the expected option on the Desc 
command (Desc(tab, verbose="high", expected=TRUE)).  

Desc
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Additionally, the difference between the observed cell count and the expected cell count will 
be reported when using the residuals=TRUE and stdres=TRUE option for the standardized 
residuals (amount that each cell contributes to the value of the test statistic).  
 
options(fmt.num=structure(list(digits=3), class="fmt")) 
PercTable(tab, freq=TRUE, rfrq="000",  
          expected=TRUE, residuals=TRUE) 
 
##              Sex 
##                  Male  Female 
## Eye                           
## Brown freq         98     122 
##       exp     103.682 116.318 
##       res      -0.558   0.527 
##                               
## Blue  freq        101     114 
##       exp     101.326 113.674 
##       res      -0.032   0.031 

 

 
 
 
 
## Hazel freq         47      46 
##       exp      43.829  49.171 
##       res       0.479  -0.452 
##                               
## Green freq         33      31 
##       exp      30.162  33.838 

##       res       0.517  -0.488 

 
This output shows the observed frequencies (freq), the expected values (exp) and the 
Pearson residuals (res), whose squared values are each cell’s contribution to the 2 statistic. 
None of the expected values are less than 5, so we feel comfortable with the result of the Chi-
Square test above.  
 
The Likelihood Ratio 2 is asymptotically equivalent to the Pearson 2 (and Mantel-Haenszel 
2) but not usually used when analyzing 2x2 tables. It is used in logistic regression and 
loglinear modeling which involves contingency tables. 
 
The Mantel-Haenszel 2 is related to the Pearson 2 and, in the 2x2 case, as the sample size 
gets large these statistics converge. In the case of 2xC or Rx2 tables, if the variable with more 
than 2 categories is ordinal, the Mantel-Haenszel 2 is a test for trend while the Pearson 2 
remains a general test for association.  
 
When the verbose argument of the function Desc is set to "high", several statistics that 
describe the nominal and ordinal association between the two variables of the contingency 
table will be computed.  
 
##                        estimate  lwr.ci  upr.ci 
## Phi Coeff.               0.0508       -       - 
## Contingency Coeff.       0.0508       -       - 
## Cramer V                 0.0508  0.0000  0.1076 
 

 

The phi coefficient is a measure of the degree of association between two categorical 
variables and is interpretable as a correlation coefficient. It is derived from the 2-statistic 
but is free of the influence of the total sample size (Fleiss, 1981). Being independent of the 
sample size is a desirable quality because the 2-statistic itself is sensitive to sample size. As 
the sample size increases, the 2 value will increase even if the cell proportions remain 
unchanged.  
Pearson’s contingency coefficient and Cramer’s V are also derived from the chi-square and in 
the 2x2 table they are identical to the Phi coefficient (and similar to the Phi coefficient in 
interpretation). These three measures of degree of association are well suited for nominal 
variables in which the order of the levels is meaningless.  
 
Cramer’s V is useful for comparing multiple 2 test statistics and is generalizable across 
contingency tables of varying sizes. It is not affected by sample size and therefore is very 
useful in situations, where a statistically significant test result is suspected to be the result of 
a large sample size instead of any substantive relationship between the variables. It is 
interpreted as a measure of the relative strength of an association between two variables. It 
goes from 0 to 1, where 1 indicates strong association. In 2x2-tables the range is -1 to 1. The 
value of 0.0508 shows a very small, resp. no association between sex and hair colour at all. 

PercTable,
ExpFreq 
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The following are measures of ordinal association that consider whether the variable Y tends 
to increase as X increases: Gamma, Kendall’s tau-b, Stuart’s tau-c, and Somers’ D. These 
measures are appropriate for ordinal variables, and they classify pairs of observations as 
concordant or discordant. A pair is concordant if the observation with the larger value of X 
also has the larger value of Y. A pair is discordant if the observation with the larger value of X 
has the smaller value of Y. Refer to Agresti (1996) and the other references cited in the 
discussion of each measure of association. 
(We switch the example here, because our HairEyeColour variables aren’t ordinal.) 
 
(job <- matrix(c(16,19,9,8,17,11,14,60,56), nrow=3, 
              dimnames=list("satisfaction"=c("high","medium","low"), 
                            "security"=c("high","medium","low")))) 
##             security 
## satisfaction high medium low 
##       high     16      8  14 
##       medium   19     17  60 
##       low       9     11  56 
 
Desc(job, verbose="high") 
## 
##                        estimate  lwr.ci  upr.ci 
... (output skipped)  
## Goodman Kruskal Gamma    0.3960  0.2103  0.5817 
## Kendall Tau-b            0.2405  0.1206  0.3603 
## Stuart Tau-c             0.2106  0.1038  0.3174 
## Somers D C|R             0.2238  0.1123  0.3354 
## Somers D R|C             0.2583  0.1242  0.3924 
## Pearson Correlation      0.2742  0.1442  0.3950 
## Spearman Correlation     0.2633  0.1327  0.3850 
... (output skipped) 

 
Gamma is recommended when there are lots of ties in the data. Tau-b is recommended for 
square tables.  
 
The Pearson correlation coefficient and the Spearman rank correlation coefficient are also 
appropriate for ordinal variables. The Pearson correlation describes the strength of the 
linear association between the row and column variables, and it is computed using the row 
and column scores specified. The Spearman correlation is computed with rank scores.  
The polychoric correlation is not reported but can be calculated with the function 
CorPolychor. It also requires ordinal variables and assumes that the variables have an 
underlying bivariate normal distribution.  
 
The measures of association lambda and uncertainty coefficient do not require ordinal 
variables, but they are appropriate for nominal variables. 
Lambda has another concept than chi-squares. With Lambda the proportional reduction in 
error will be calculated. Lambda allows deciding, if the prediction of a class can be improved 
by using the other variable.  
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Desc(apply(Titanic, c(2,4), sum), verbose="high", rfrq="000") 
## ------------------------------------------------------------------------------  
... (output skipped) 
 
##                        estimate  lwr.ci  upr.ci 
... (output skipped) 
## Lambda C|R               0.3066  0.2568  0.3564 
## Lambda R|C               0.0000  0.0000  0.0000 
## Lambda sym               0.1846  0.1546  0.2146 
## Uncertainty Coeff. C|R   0.1569  0.1283  0.1854 
## Uncertainty Coeff. R|C   0.1903  0.1570  0.2237 
## Uncertainty Coeff. sym   0.1720  0.1414  0.2026 
## Mutual Information       0.1424       -       - 
## 
##        Survived 
##            No   Yes   Sum 
## Sex                       
## Male    1'364   367 1'731 
## Female    126   344   470 
## Sum     1'490   711 2'201 

 
Without information about the sex, the best prediction for surviving would be “No”. We 
would guess 2201-1490=711 FALSE (Error E1=711) and 1490 correct. Using the variable sex 
we would guess survived “Yes” for women and “No” for men. So we would guess correct 
344 women and 1364 men and 126 women and 367 men not correct (leading to an error 
E2=126+367=493). Lambda is then calculated as  

3066.0
711

493711
1E

2E1E
)R|C( 







  The (C|R) notation indicates that the column variable is to be predicted by using the row 
variable. Thus, using the variable Sex (row-variable R) we make 30% less errors in 
predicting Survival of Titanic disaster (column variable C). 
Note that we would not profit by the variable survived to predict the sex of a person, as the 
according lambda value R|C is 0. 
 
Asymptotic confidence limits for all statistics are computed. The confidence coefficient is 
determined according to the value of the conf.level option, which by default equals 0.95 
and produces 95% confidence limits. 
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13 Cases 

The following cases are taken more or less verbatim from the SAS-Freq documentation[4] and 
recalculated with base R and specific DescTools functions. The comments and descriptions 
have partly been adopted. 
 
 
13.1 Eye colour ‐ Binomial Proportions for One‐Way Frequency Tables 

The binomial proportions are computed as the proportion of observations for all the levels of 
the variable. The following statements compute the proportion of children with brown eyes 
(from the data set in Example 28.1 on page 1335) and test this value against the hypothesis 
that the proportion is 50%. Also, these statements test whether the proportion of children 
with fair hair is 28%. 
 
tab <- as.table(apply(HairEyeColor, 2, sum)[c("Brown","Hazel","Green","Blue")])  
Desc(tab) 
 
## ------------------------------------------------------------------------------  
## tab (table) 
##  
## Summary:  
## n: 592, rows: 4 
##  
## Pearson's Chi-squared test (1-dim uniform): 
##   X-squared = 133.47, df = 3, p-value < 2.2e-16 
##  
##    level  freq   perc  cumfreq  cumperc 
## 1  Brown   220  37.2%      220    37.2% 
## 2  Hazel    93  15.7%      313    52.9% 
## 3  Green    64  10.8%      377    63.7% 
## 4   Blue   215  36.3%      592   100.0% 
   
xci <- BinomCI(tab, sum(tab)) 
rownames(xci) <- rownames(tab) 
print(xci, digits=3) 
 
##        est lwr.ci upr.ci 
## Brown 0.372 0.3336  0.411 
## Hazel 0.157 0.1300  0.189 
## Green 0.108 0.0856  0.136 
## Blue  0.363 0.3254  0.403 
 
 

Let’s produce a plot of that: 
 

 
 
 
PlotDot(xci[,1], main="Eye colour", pch=NA,  
        args.errbars = list( 
          from=xci[,2], to=xci[,3],  
          mid=xci[,1], pch=21, cex=1.4),  
        xlim=c(0,1)) 
 
abline(v=seq(0,1,0.1), col="grey", lty="dotted") 

Figure	13.1    Dotplot of marginal proportions for eye colour. 
 
 
 
The estimation of simultaneously calculated confidence intervals for multinomial 
proportions according to the method of Sison and Glaz leads to slightly broader confidence 
intervals especially for the smaller groups (Hazel, Green). 
 
   

PlotDot
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print(MultinomCI(tab), digits=3) 
 
##         est lwr.ci upr.ci 
## Brown 0.372 0.3294  0.415 
## Hazel 0.157 0.1149  0.201 
## Green 0.108 0.0659  0.152 
## Blue  0.363 0.3209  0.407 
 

 
13.2 Cochran‐Armitage Trend Test 

In clinical trials, a dose response study is often conducted to investigate the relationship 
between increasing dosage and the effect of the drug under study. Usually the dose levels 
tested are ordinal, and the effect of the drug is measured in binary. In this case, Cochran-
Armitage trend test is frequently used to test for trend among binomial proportions. 
 
d.lungtumor <- data.frame(dose  = rep(c(0, 1, 2), c(40, 50, 48)), 
                          tumor = c(rep(c(0, 1), c(38, 2)), 
                                  rep(c(0, 1), c(43, 7)), 
                                  rep(c(0, 1), c(33, 15)))) 
lung <- table(d.lungtumor$dose, d.lungtumor$tumor) 
Desc(lung, rfrq="010") 
 
... (output skipped)  
##             tumor 
##                 0     1   Sum 
## dose                          
## 
## 0    freq      38     2    40 
##      p.row  95.0%  5.0%     . 
## 
## 1    freq      43     7    50 
##      p.row  86.0% 14.0%     . 
## 
## 2    freq      33    15    48 
##      p.row  68.8% 31.2%     . 
## 
## Sum  freq     114    24   138 
##      p.row      .     .     . 

Figure	13.2    Lung cancer proportions. 
 
 
CochranArmitageTest(lung, alternative = "increasing") 
 
##    Cochran-Armitage test for trend 
## 
## data:  lung 
## Z = -3.2735, dim = 3, p-value = 0.0005311 
## alternative hypothesis: increasing 
 

The Cochran-Armitage test supports the trend hypothesis. The small right-sided p-value 
(alternative = “increasing”) indicate that the probability of the column 1 level 
(lungtumor = 1) increase as dose increases.  
 
 
13.3 Heart – 2x2‐Table 

This example computes chi-square tests and Fisher’s exact test to compare the probability of 
coronary heart disease for two types of diet. It also estimates the relative risks and computes 
exact confidence limits for the odds ratio.  
The data set contains hypothetical data for a case-control study of high fat diet and the risk of 
coronary heart disease. The data can be entered as: 
 
heart <- as.table(matrix(c(11, 2, 4, 6), nrow=2, 
                         dimnames = list(Exposure = c("High", "Low"),  
                                         Response = c("Yes", "No")))) 
Label(heart) <- "Table of Response by Exposure" 
 

Cochran
ArmitageTest 
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The data is sorted in descending order by both variables, Exposure and Response, so that the 
first cell of the 2x2-table contains the frequency of positive exposure and positive response.  
 
Desc(heart, main="Case-Control Study of High Fat/Cholesterol Diet") 
 

will produce the following result: 
 
## Case-Control Study of High Fat/Cholesterol Diet 
##   Table of Response by Exposure 
##  
##  
## Summary:  
## n: 23, rows: 2, columns: 2 
##  
## Pearson's Chi-squared test (cont. adj): 
##   X-squared = 3.1879, df = 1, p-value = 0.07418 
## Fisher's exact test p-value = 0.03931 
## McNemar's chi-squared = 0.16667, df = 1,  
##   p-value = 0.6831 
##  
## Warning message: 
##   Exp. counts < 5: Chi-squared approx. may  
##   be incorrect!! 
##  
##                     estimate lwr.ci upr.ci 
##                                            
## odds ratio             8.250  1.154 59.003 
## rel. risk (col1)       2.933  0.850 10.120 
## rel. risk (col2)       0.356  0.140  0.901 
##  
## Phi-Coefficient        0.464 
## Contingency Coeff.     0.421 
## Cramer's V             0.464 
##  
##                 Response 
##                    Yes     No    Sum 
## Exposure                             
## High     freq       11      4     15 
##          perc    47.8%  17.4%  65.2% 
##          p.row   73.3%  26.7%      . 
##          p.col   84.6%  40.0%      . 
##                                      
## Low      freq        2      6      8 
##          perc     8.7%  26.1%  34.8% 
##          p.row   25.0%  75.0%      . 
##          p.col   15.4%  60.0%      . 
##                                      
## Sum      freq       13     10     23 
##          perc    56.5%  43.5% 100.0% 
##          p.row       .      .      . 
##          p.col       .      .      . 
##                                      
 

   
 
 
 

We learn that we have a total of 23 persons in our dataset and that the table has two rows 
and 2 columns. The association between the response and exposure appears not be existent, 
as the chi-square test is not significant (p = 0.0741).  
However, if the expected value of one or more cells is less than 5, the chi-square test may not 
be valid. A specific warning indicates that this is here the case. Fisher’s exact test is an 
alternative test which does not depend on the expected values and is the appropriate test in 
this situation. It analyses whether the probability of heart disease in the high fat group 
differs from the one in the low-fat group; since this p-value is small (p < 0.05), the alternative 
hypothesis is supported. Note that only the one-sided test will be reported. 
 
The function expects the table to have the risk factor in rows and the response or outcome in 
the columns. The positive risk factor is preferred to be in the first row and the positive 
response in the first column: 

 
 
Risk factor 

Response 
Yes No 

Yes  A B 
No C D 
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The odds ratio is then defined as  
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Recall that the odds of an event occurring is the ratio of p/q where p is the probability of the 
event occurring and q is the probability of the event not occurring. The odds ratio provides in 
fact an estimate of the relative risk when an event is rare (which here is not the case!).  
The estimate indicates that the odds of heart disease are 8.25 times higher in the high fat diet 
group; however, the wide confidence limits (1.154, 59.003) indicate that this estimate has 
low precision.  
 
The relative risk is the ratio of the probability of the heart disease occurring in the risk group 
(high fat diet) to the probability of the heart disease occurring in the comparison, non-
exposed group (low fat diet). This is reported as rel. risk (col1) in the output above.  
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A relative risk greater than 1 indicates that the probability of positive response is greater 
(here: heart disease) in row 1 (here: high fat diet group) than in row 2 (here: low fat diet 
group). Similarly, a relative risk less than 1 would indicate that the probability of positive 
response is less in row 1 than in row 2. The strength of association increases with the 
deviation from 1. 
 
The relative risk column 2 uses the observations in this column to calculate the ratio. 
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Recall an incidence rate is the proportion of new cases (outcomes) occurring over a period of 
any one time. Therefore, the risk of an outcome makes sense in the context of prospective 
cohort studies where the outcome has not occurred in any case at the start of the study.  
While the relative risk RR is a measure which is appropriate for prospective cohort studies, 
the odds ratio OR can be used for crosssectional case-control studies as well as prospective 
studies. In both cases, a value of 1 indicates no difference between groups.  
 
Interchanging the row and column variables or modifying the table order will result in 
different values of odds ratio and relative risks. Reversing the columns for instance will 
result in the reciprocal OR: 
 
OddsRatio(heart) 
## [1] 8.25 
 
1 / OddsRatio(Rev(heart, 1)) 
## [1] 8.25 
 

The interpretations should however remain consistent.  
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13.4 Skin ‐ Agreement Study 

Medical researchers are interested in evaluating the efficacy of a new treatment for a skin 
condition. Dermatologists from participating clinics were trained to conduct the study and to 
evaluate the condition. After the training, two dermatologists examined patients with the 
skin condition from a pilot study and rated the same patients. The possible evaluations are 
terrible, poor, marginal, and clear.  
In order to evaluate the agreement of the diagnoses (a possible contribution to measurement 
error in the study), the kappa coefficient is computed.  
 
ParseSASDatalines(" 
  data d.SkinCondition; 
  input Derm1 $ Derm2 $ Count; 
  datalines; 
  terrible terrible 10  terrible poor 4   terrible marginal 1   terrible clear 0 
  poor terrible 5       poor poor 10      poor marginal 12      poor clear 2 
  marginal terrible 2   marginal poor 4   marginal marginal 12  marginal clear 5 
  clear terrible 0      clear poor 2      clear marginal 6      clear clear 13 
;") 
skin <- xtabs(Count ~ ., d.SkinCondition) 
 

The function Agree computes raw simple percentage agreement among raters.  
 
Agree(Untable(skin)) 
 
## [1] 0.5113636 
## attr(,"subjects") 
## [1] 88 
## attr(,"raters") 
## [1] 2 
 

We learn that 51.1% of the ratings were the same between the two researchers. A less coarse 
approach to measure agreement is Cohen’s kappa. 
 
CohenKappa(skin, conf.level=0.95) 
 
##     kappa    lwr.ci    upr.ci  
## 0.3448753 0.2048513 0.4848994  

 
CohenKappa(skin, conf.level=0.95, weights="Fleiss-Cohen") 
##     kappa    lwr.ci    upr.ci  
## 0.6607229 0.4207465 0.9006993 
 

The kappa coefficient has the value 0.3449, which indicates slight agreement between the 
dermatologists. The conclusion to reject the null hypothesis of no agreement is supported by 
the confidence interval of (0.2030, 0.4868), which suggests that the true kappa is greater 
than zero. The weighted kappa coefficient can be calculated by defining the weights 
argument. Its value is even larger (0.6607) than the unweighted kappa. 
The Bowker’s test for symmetry (reported by mcnemar.test) is not defined here (because 
of the zeros in the table). 
 
 
 
 
 
13.5 Migraine ‐ Statistics for a Stratified 2x2‐Table 

The data set Migraine contains hypothetical data for a clinical trial of migraine treatment. 
Subjects of both genders receive either a new drug therapy or a placebo. Their response to 
treatment is coded as ’Better’ or ’Same’. The data are recorded as cell counts, and the number 
of subjects for each treatment and response combination is recorded in the variable Count. 
The following statements create a three-way table stratified by Gender, where Treatment 
forms the rows and Response forms the columns.  
 
 
  

CohenKappa
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ParseSASDatalines(" 
  data d.Migraine; 
  input Gender $ Treatment $ Response $ Count @@; 
  datalines; 
  female Active Better 16 female Active Same 11 
  female Placebo Better 5 female Placebo Same 20 
  male Active Better 12 male Active Same 16 
  male Placebo Better 7 male Placebo Same 19 
; 
") 
migraine <- xtabs(Count ~ Treatment + Response + Gender, d.Migraine) 
 

How does this look like? 
 
ftable(migraine, col.vars = c(1,3)) 
 
##          Treatment Active      Placebo      
##          Gender    female male  female male 
## Response                                    
##   Better               16   12       5    7 
##   Same                 11   16      20   19 
 

It’s always a good idea to have a plot of the situation: 
 
d.frm <- as.data.frame(prop.table(migraine, c(2,3))) 
d.frm$Treatment <- reorder.factor(d.frm$Treatment, new.order = 
c("Placebo","Active")) 
d.frm$Response <- reorder.factor(d.frm$Response, new.order = c("Same","Better")) 
 
library(lattice) 
barchart(Freq ~ Response | Treatment + Gender, data=d.frm,  
         col="steelblue", 
         panel = function(x, ...) { 
           panel.grid(h=-1, v=0) 
           panel.barchart(x, ...) 
         }, 
         par.settings = list(strip.background=list(col="lightgrey"),  
                             layout.heights=list(strip=1.45)), 
         par.strip.text = list(col="black"), 
         layout=c(2,2), cex.axis=2, ylim=c(0,1), xlab="Response", ylab="Percent", 
         scales=list(tck=c(0.8,0.8), col="black", x=list(cex=1), y=list(cex=1)), 
         main="Migraine") 
 

This code yields: 

 
Figure	13.3    Trellis barplot of migraine patients. 
 
 
The percentages are calculated so, that every panel has a total of 100%: 
 
ptab <- prop.table(migraine, c(2,3)) 
ptab[] <- Format(ptab, digits=1, fmt="%") 
ptab 
  

barchart
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## , , Treatment = Active 
 
##         Gender 
## Response female male  
##   Better 59.3%  42.9% 
##   Same   40.7%  57.1% 
 

 
 
##, , Treatment = Placebo 
## 
##         Gender 
## Response female male  
##   Better 20.0%  26.9% 
##   Same   80.0%  73.1% 

 

Apparently the treatment seems to have an obvious effect. But the plot seems as well to 
indicate a gender effect, as the treatment is more pronounced for women than for men. 
 
The function mantelhaen.test produces the Cochran-Mantel-Haenszel statistics. For this 
stratified 2x2 table, an estimate of the common odds ratio including its confidence interval is 
also displayed. (Note that the function expects the third dimension to be the strata, here 
gender.) 
 
mantelhaen.test(migraine,  alternative = "two.sided", correct = FALSE) 
 
##  Mantel-Haenszel chi-squared test without continuity correction 
## 
## data:  migraine 
## Mantel-Haenszel X-squared = 8.3052, df = 1, p-value = 0.003953 
## alternative hypothesis: true common odds ratio is not equal to 1 
## 95 percent confidence interval: 
##  1.445613 7.593375 
## sample estimates: 
## common odds ratio  
##          3.313168 
 

The significant p-value (0.004) indicates that the association between treatment and 
response remains strong after adjusting for gender.   
 
A table of relative risks can be produced with 
 
apply(migraine, 3, function(x) list(rbind( 
     "Case-control (odds ratio)" = OddsRatio(x, conf.level = 0.95),  
     "Cohort (col1 risk)"        = RelRisk(x, conf.level = 0.95),  
     "Cohort (col2 risk)"        = RelRisk(Rev(x, 1), conf.level = 0.95)))) 
 
## $female 
## $female[[1]] 
##                           odds ratio    lwr.ci     upr.ci 
## Case-control (odds ratio)   5.818182 1.6755251 20.2033617 
## Cohort (col1 risk)          2.962963 1.3713759  7.0036872 
## Cohort (col2 risk)          0.337500 0.1427819  0.7291947 
## 
## $male 
## $male[[1]] 
##                           odds ratio    lwr.ci   upr.ci 
## Case-control (odds ratio)  2.0357143 0.6477707 6.397531 
## Cohort (col1 risk)         1.5918367 0.7662184 3.454346 
## Cohort (col2 risk)         0.6282051 0.2894904 1.305111 
 

Because this is a prospective study, the relative risk estimate assesses the effectiveness of the 
new drug; the “Cohort (col1 risk)” values are the appropriate estimates for the first column, 
or the risk of improvement. The probability of migraine improvement with the new drug is 
just over two times the probability of improvement with the placebo. 
 
The function mantelhaen.test displays also an estimate of the common	odds ratio. This 
figure is calculated as [Agresti, p. 234]:  
 
sum(apply(migraine, 3, function(x) prod(diag(x))/sum(x))) /  
    sum(apply(migraine, 3, function(x) prod(diag(Rev(x, 1)))/sum(x))) 
 
## 3.313168 
 

  

mantelhaen.test 
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The Breslow-Day test for homogeneity of the odds ratios can be calculated with the 
eponymous function. It tests the null hypothesis that the odds ratios for the q strata are all 
equal.   
 
BreslowDayTest(migraine) 
 
## Breslow-Day Test on Homogeneity of the Odds Ratios 
##  
## data:  migraine 
## X-squared = 1.4965, df = 1, p-value = 0.2212 
 

The large p-value (0.2212) indicates no significant gender difference in the odds ratios.  
Had the test for homogeneity of the odds ratios been statistically significant, a closer 
examination of each 2x2 table at each strata of the stratification variable would be required 
before making any further interpretations or conclusions. 
 
Caution: Unlike the Cochran-Mantel-Haenszel statistics, the Breslow-Day test requires a large 
sample size within each stratum, and this limits its usefulness. In addition, the validity of the 
Cochran-Mantel-Haenszel tests does not depend on any assumption of homogeneity of the 
odds ratios; therefore, the Breslow-Day test should never be used as such an indicator of 
validity.  
 
Homogeneity could also be assessed using Woolf's test. 
 
WoolfTest(migraine) 
 
## Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.) 
## 
## data:  migraine 
## X-squared = 1.4808, df = 1, p-value = 0.2236 
 

Here the Woolf gives almost equivalent results to the BreslowDay test for consistency for the 
odds ratio. 
 
The odds ratio for the treatment is 
 
tab <- t(apply(migraine, c(1,2), sum)) 
OddsRatio(tab, conf.level = 0.95) 
 
## odds ratio     lwr.ci     upr.ci  
##   3.370370   1.461559   7.772108 
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