# Natural Language Toolkit: NLTK's very own tokenizer.
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Liling Tan
#         Tom Aarsen <> (modifications)
# URL: <https://www.nltk.org>
# For license information, see LICENSE.TXT


import re
import warnings
from typing import Iterator, List, Tuple

from nltk.tokenize.api import TokenizerI
from nltk.tokenize.util import align_tokens


class MacIntyreContractions:
    """
    List of contractions adapted from Robert MacIntyre's tokenizer.
    """

    CONTRACTIONS2 = [
        r"(?i)\b(can)(?#X)(not)\b",
        r"(?i)\b(d)(?#X)('ye)\b",
        r"(?i)\b(gim)(?#X)(me)\b",
        r"(?i)\b(gon)(?#X)(na)\b",
        r"(?i)\b(got)(?#X)(ta)\b",
        r"(?i)\b(lem)(?#X)(me)\b",
        r"(?i)\b(more)(?#X)('n)\b",
        r"(?i)\b(wan)(?#X)(na)(?=\s)",
    ]
    CONTRACTIONS3 = [r"(?i) ('t)(?#X)(is)\b", r"(?i) ('t)(?#X)(was)\b"]
    CONTRACTIONS4 = [r"(?i)\b(whad)(dd)(ya)\b", r"(?i)\b(wha)(t)(cha)\b"]


class NLTKWordTokenizer(TokenizerI):
    """
    The NLTK tokenizer that has improved upon the TreebankWordTokenizer.

    This is the method that is invoked by ``word_tokenize()``.  It assumes that the
    text has already been segmented into sentences, e.g. using ``sent_tokenize()``.

    The tokenizer is "destructive" such that the regexes applied will munge the
    input string to a state beyond re-construction. It is possible to apply
    `TreebankWordDetokenizer.detokenize` to the tokenized outputs of
    `NLTKDestructiveWordTokenizer.tokenize` but there's no guarantees to
    revert to the original string.
    """

    # Starting quotes.
    STARTING_QUOTES = [
        (re.compile("([«“‘„]|[`]+)", re.U), r" \1 "),
        (re.compile(r"^\""), r"``"),
        (re.compile(r"(``)"), r" \1 "),
        (re.compile(r"([ \(\[{<])(\"|\'{2})"), r"\1 `` "),
        (re.compile(r"(?i)(\')(?!re|ve|ll|m|t|s|d|n)(\w)\b", re.U), r"\1 \2"),
    ]

    # Ending quotes.
    ENDING_QUOTES = [
        (re.compile("([»”’])", re.U), r" \1 "),
        (re.compile(r"''"), " '' "),
        (re.compile(r'"'), " '' "),
        (re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "),
        (re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "),
    ]

    # For improvements for starting/closing quotes from TreebankWordTokenizer,
    # see discussion on https://github.com/nltk/nltk/pull/1437
    # Adding to TreebankWordTokenizer, nltk.word_tokenize now splits on
    # - chervon quotes u'\xab' and u'\xbb' .
    # - unicode quotes u'\u2018', u'\u2019', u'\u201c' and u'\u201d'
    # See https://github.com/nltk/nltk/issues/1995#issuecomment-376741608
    # Also, behavior of splitting on clitics now follows Stanford CoreNLP
    # - clitics covered (?!re|ve|ll|m|t|s|d)(\w)\b

    # Punctuation.
    PUNCTUATION = [
        (re.compile(r'([^\.])(\.)([\]\)}>"\'' "»”’ " r"]*)\s*$", re.U), r"\1 \2 \3 "),
        (re.compile(r"([:,])([^\d])"), r" \1 \2"),
        (re.compile(r"([:,])$"), r" \1 "),
        (
            re.compile(r"\.{2,}", re.U),
            r" \g<0> ",
        ),  # See https://github.com/nltk/nltk/pull/2322
        (re.compile(r"[;@#$%&]"), r" \g<0> "),
        (
            re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'),
            r"\1 \2\3 ",
        ),  # Handles the final period.
        (re.compile(r"[?!]"), r" \g<0> "),
        (re.compile(r"([^'])' "), r"\1 ' "),
        (
            re.compile(r"[*]", re.U),
            r" \g<0> ",
        ),  # See https://github.com/nltk/nltk/pull/2322
    ]

    # Pads parentheses
    PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ")

    # Optionally: Convert parentheses, brackets and converts them to PTB symbols.
    CONVERT_PARENTHESES = [
        (re.compile(r"\("), "-LRB-"),
        (re.compile(r"\)"), "-RRB-"),
        (re.compile(r"\["), "-LSB-"),
        (re.compile(r"\]"), "-RSB-"),
        (re.compile(r"\{"), "-LCB-"),
        (re.compile(r"\}"), "-RCB-"),
    ]

    DOUBLE_DASHES = (re.compile(r"--"), r" -- ")

    # List of contractions adapted from Robert MacIntyre's tokenizer.
    _contractions = MacIntyreContractions()
    CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2))
    CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3))

    def tokenize(
        self, text: str, convert_parentheses: bool = False, return_str: bool = False
    ) -> List[str]:
        r"""Return a tokenized copy of `text`.

        >>> from nltk.tokenize import NLTKWordTokenizer
        >>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York.  Please buy me\ntwo of them.\nThanks.'''
        >>> NLTKWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE
        ['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36',
        'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
        'of', 'them.', 'Thanks', '.']
        >>> NLTKWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE
        ['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36',
        'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
        'of', 'them.', 'Thanks', '.']


        :param text: A string with a sentence or sentences.
        :type text: str
        :param convert_parentheses: if True, replace parentheses to PTB symbols,
            e.g. `(` to `-LRB-`. Defaults to False.
        :type convert_parentheses: bool, optional
        :param return_str: If True, return tokens as space-separated string,
            defaults to False.
        :type return_str: bool, optional
        :return: List of tokens from `text`.
        :rtype: List[str]
        """
        if return_str:
            warnings.warn(
                "Parameter 'return_str' has been deprecated and should no "
                "longer be used.",
                category=DeprecationWarning,
                stacklevel=2,
            )

        for regexp, substitution in self.STARTING_QUOTES:
            text = regexp.sub(substitution, text)

        for regexp, substitution in self.PUNCTUATION:
            text = regexp.sub(substitution, text)

        # Handles parentheses.
        regexp, substitution = self.PARENS_BRACKETS
        text = regexp.sub(substitution, text)
        # Optionally convert parentheses
        if convert_parentheses:
            for regexp, substitution in self.CONVERT_PARENTHESES:
                text = regexp.sub(substitution, text)

        # Handles double dash.
        regexp, substitution = self.DOUBLE_DASHES
        text = regexp.sub(substitution, text)

        # add extra space to make things easier
        text = " " + text + " "

        for regexp, substitution in self.ENDING_QUOTES:
            text = regexp.sub(substitution, text)

        for regexp in self.CONTRACTIONS2:
            text = regexp.sub(r" \1 \2 ", text)
        for regexp in self.CONTRACTIONS3:
            text = regexp.sub(r" \1 \2 ", text)

        # We are not using CONTRACTIONS4 since
        # they are also commented out in the SED scripts
        # for regexp in self._contractions.CONTRACTIONS4:
        #     text = regexp.sub(r' \1 \2 \3 ', text)

        return text.split()

    def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]:
        r"""
        Returns the spans of the tokens in ``text``.
        Uses the post-hoc nltk.tokens.align_tokens to return the offset spans.

            >>> from nltk.tokenize import NLTKWordTokenizer
            >>> s = '''Good muffins cost $3.88\nin New (York).  Please (buy) me\ntwo of them.\n(Thanks).'''
            >>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23),
            ... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38),
            ... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59),
            ... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)]
            >>> list(NLTKWordTokenizer().span_tokenize(s)) == expected
            True
            >>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in',
            ... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')',
            ... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.']
            >>> [s[start:end] for start, end in NLTKWordTokenizer().span_tokenize(s)] == expected
            True

        :param text: A string with a sentence or sentences.
        :type text: str
        :yield: Tuple[int, int]
        """
        raw_tokens = self.tokenize(text)

        # Convert converted quotes back to original double quotes
        # Do this only if original text contains double quote(s) or double
        # single-quotes (because '' might be transformed to `` if it is
        # treated as starting quotes).
        if ('"' in text) or ("''" in text):
            # Find double quotes and converted quotes
            matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)]

            # Replace converted quotes back to double quotes
            tokens = [
                matched.pop(0) if tok in ['"', "``", "''"] else tok
                for tok in raw_tokens
            ]
        else:
            tokens = raw_tokens

        yield from align_tokens(tokens, text)
