def read_sql(sql, con, index_col, **kwargs):
    """
    Read SQL query or database table into a DataFrame.

    This function is a convenience wrapper around ``read_sql_table`` and
    ``read_sql_query``. It will delegate to the specific function depending
    on the provided input. A SQL query will be routed to ``read_sql_query``,
    while a database table name will be routed to ``read_sql_table``.
    Note that the delegated function might have more specific notes about
    their functionality not listed here.

    Parameters
    ----------
    sql : str or SQLAlchemy Selectable
        Name of SQL table in database or SQL query to be executed. TextClause is not supported
    con : str
        Full sqlalchemy URI for the database connection
    index_col : str
        Column which becomes the index, and defines the partitioning. Should
        be a indexed column in the SQL server, and any orderable type. If the
        type is number or time, then partition boundaries can be inferred from
        ``npartitions`` or ``bytes_per_chunk``; otherwise must supply explicit
        ``divisions``.

    Returns
    -------
    dask.dataframe

    See Also
    --------
    read_sql_table : Read SQL database table into a DataFrame.
    read_sql_query : Read SQL query into a DataFrame.
    """
    from dask.dataframe.io.sql import read_sql

    return read_sql(sql, con, index_col, **kwargs)


def read_sql_table(
    table_name,
    con,
    index_col,
    divisions=None,
    npartitions=None,
    limits=None,
    columns=None,
    bytes_per_chunk="256 MiB",
    head_rows=5,
    schema=None,
    meta=None,
    engine_kwargs=None,
    **kwargs,
):
    """
    Read SQL database table into a DataFrame.

    If neither ``divisions`` or ``npartitions`` is given, the memory footprint of the
    first few rows will be determined, and partitions of size ~256MB will
    be used.

    Parameters
    ----------
    table_name : str
        Name of SQL table in database.
    con : str
        Full sqlalchemy URI for the database connection
    index_col : str
        Column which becomes the index, and defines the partitioning. Should
        be a indexed column in the SQL server, and any orderable type. If the
        type is number or time, then partition boundaries can be inferred from
        ``npartitions`` or ``bytes_per_chunk``; otherwise must supply explicit
        ``divisions``.
    columns : sequence of str or SqlAlchemy column or None
        Which columns to select; if None, gets all. Note can be a mix of str and SqlAlchemy columns
    schema : str or None
        Pass this to sqlalchemy to select which DB schema to use within the
        URI connection
    divisions: sequence
        Values of the index column to split the table by. If given, this will
        override ``npartitions`` and ``bytes_per_chunk``. The divisions are the value
        boundaries of the index column used to define the partitions. For
        example, ``divisions=list('acegikmoqsuwz')`` could be used to partition
        a string column lexographically into 12 partitions, with the implicit
        assumption that each partition contains similar numbers of records.
    npartitions : int
        Number of partitions, if ``divisions`` is not given. Will split the values
        of the index column linearly between ``limits``, if given, or the column
        max/min. The index column must be numeric or time for this to work
    limits: 2-tuple or None
        Manually give upper and lower range of values for use with ``npartitions``;
        if None, first fetches max/min from the DB. Upper limit, if
        given, is inclusive.
    bytes_per_chunk : str or int
        If both ``divisions`` and ``npartitions`` is None, this is the target size of
        each partition, in bytes
    head_rows : int
        How many rows to load for inferring the data-types, and memory per row
    meta : empty DataFrame or None
        If provided, do not attempt to infer dtypes, but use these, coercing
        all chunks on load
    engine_kwargs : dict or None
        Specific db engine parameters for sqlalchemy
    kwargs : dict
        Additional parameters to pass to `pd.read_sql()`

    Returns
    -------
    dask.dataframe

    See Also
    --------
    read_sql_query : Read SQL query into a DataFrame.

    Examples
    --------
    >>> df = dd.read_sql_table('accounts', 'sqlite:///path/to/bank.db',
    ...                  npartitions=10, index_col='id')  # doctest: +SKIP
    """
    from dask.dataframe.io.sql import read_sql_table as _read_sql_table

    return _read_sql_table(
        table_name,
        con,
        index_col,
        divisions=divisions,
        npartitions=npartitions,
        limits=limits,
        columns=columns,
        bytes_per_chunk=bytes_per_chunk,
        head_rows=head_rows,
        schema=schema,
        meta=meta,
        engine_kwargs=engine_kwargs,
        **kwargs,
    )


def read_sql_query(
    sql,
    con,
    index_col,
    divisions=None,
    npartitions=None,
    limits=None,
    bytes_per_chunk="256 MiB",
    head_rows=5,
    meta=None,
    engine_kwargs=None,
    **kwargs,
):
    """
    Read SQL query into a DataFrame.

    If neither ``divisions`` or ``npartitions`` is given, the memory footprint of the
    first few rows will be determined, and partitions of size ~256MB will
    be used.

    Parameters
    ----------
    sql : SQLAlchemy Selectable
        SQL query to be executed. TextClause is not supported
    con : str
        Full sqlalchemy URI for the database connection
    index_col : str
        Column which becomes the index, and defines the partitioning. Should
        be a indexed column in the SQL server, and any orderable type. If the
        type is number or time, then partition boundaries can be inferred from
        ``npartitions`` or ``bytes_per_chunk``; otherwise must supply explicit
        ``divisions``.
    divisions: sequence
        Values of the index column to split the table by. If given, this will
        override ``npartitions`` and ``bytes_per_chunk``. The divisions are the value
        boundaries of the index column used to define the partitions. For
        example, ``divisions=list('acegikmoqsuwz')`` could be used to partition
        a string column lexographically into 12 partitions, with the implicit
        assumption that each partition contains similar numbers of records.
    npartitions : int
        Number of partitions, if ``divisions`` is not given. Will split the values
        of the index column linearly between ``limits``, if given, or the column
        max/min. The index column must be numeric or time for this to work
    limits: 2-tuple or None
        Manually give upper and lower range of values for use with ``npartitions``;
        if None, first fetches max/min from the DB. Upper limit, if
        given, is inclusive.
    bytes_per_chunk : str or int
        If both ``divisions`` and ``npartitions`` is None, this is the target size of
        each partition, in bytes
    head_rows : int
        How many rows to load for inferring the data-types, and memory per row
    meta : empty DataFrame or None
        If provided, do not attempt to infer dtypes, but use these, coercing
        all chunks on load
    engine_kwargs : dict or None
        Specific db engine parameters for sqlalchemy
    kwargs : dict
        Additional parameters to pass to `pd.read_sql()`

    Returns
    -------
    dask.dataframe

    See Also
    --------
    read_sql_table : Read SQL database table into a DataFrame.
    """
    from dask.dataframe.io.sql import read_sql_query as _read_sql_query

    return _read_sql_query(
        sql,
        con,
        index_col,
        divisions=divisions,
        npartitions=npartitions,
        limits=limits,
        bytes_per_chunk=bytes_per_chunk,
        head_rows=head_rows,
        meta=meta,
        engine_kwargs=engine_kwargs,
        **kwargs,
    )


def to_sql(
    df,
    name: str,
    uri: str,
    schema=None,
    if_exists: str = "fail",
    index: bool = True,
    index_label=None,
    chunksize=None,
    dtype=None,
    method=None,
    compute=True,
    parallel=False,
    engine_kwargs=None,
):
    """Store Dask Dataframe to a SQL table

    An empty table is created based on the "meta" DataFrame (and conforming to the caller's "if_exists" preference), and
    then each block calls pd.DataFrame.to_sql (with `if_exists="append"`).

    Databases supported by SQLAlchemy [1]_ are supported. Tables can be
    newly created, appended to, or overwritten.

    Parameters
    ----------
    name : str
        Name of SQL table.
    uri : string
        Full sqlalchemy URI for the database connection
    schema : str, optional
        Specify the schema (if database flavor supports this). If None, use
        default schema.
    if_exists : {'fail', 'replace', 'append'}, default 'fail'
        How to behave if the table already exists.

        * fail: Raise a ValueError.
        * replace: Drop the table before inserting new values.
        * append: Insert new values to the existing table.

    index : bool, default True
        Write DataFrame index as a column. Uses `index_label` as the column
        name in the table.
    index_label : str or sequence, default None
        Column label for index column(s). If None is given (default) and
        `index` is True, then the index names are used.
        A sequence should be given if the DataFrame uses MultiIndex.
    chunksize : int, optional
        Specify the number of rows in each batch to be written at a time.
        By default, all rows will be written at once.
    dtype : dict or scalar, optional
        Specifying the datatype for columns. If a dictionary is used, the
        keys should be the column names and the values should be the
        SQLAlchemy types or strings for the sqlite3 legacy mode. If a
        scalar is provided, it will be applied to all columns.
    method : {None, 'multi', callable}, optional
        Controls the SQL insertion clause used:

        * None : Uses standard SQL ``INSERT`` clause (one per row).
        * 'multi': Pass multiple values in a single ``INSERT`` clause.
        * callable with signature ``(pd_table, conn, keys, data_iter)``.

        Details and a sample callable implementation can be found in the
        section :ref:`insert method <io.sql.method>`.
    compute : bool, default True
        When true, call dask.compute and perform the load into SQL; otherwise, return a Dask object (or array of
        per-block objects when parallel=True)
    parallel : bool, default False
        When true, have each block append itself to the DB table concurrently. This can result in DB rows being in a
        different order than the source DataFrame's corresponding rows. When false, load each block into the SQL DB in
        sequence.
    engine_kwargs : dict or None
        Specific db engine parameters for sqlalchemy

    Raises
    ------
    ValueError
        When the table already exists and `if_exists` is 'fail' (the
        default).

    See Also
    --------
    read_sql : Read a DataFrame from a table.

    Notes
    -----
    Timezone aware datetime columns will be written as
    ``Timestamp with timezone`` type with SQLAlchemy if supported by the
    database. Otherwise, the datetimes will be stored as timezone unaware
    timestamps local to the original timezone.

    .. versionadded:: 0.24.0

    References
    ----------
    .. [1] https://docs.sqlalchemy.org
    .. [2] https://www.python.org/dev/peps/pep-0249/

    Examples
    --------
    Create a table from scratch with 4 rows.

    >>> import pandas as pd
    >>> import dask.dataframe as dd
    >>> df = pd.DataFrame([ {'i':i, 's':str(i)*2 } for i in range(4) ])
    >>> ddf = dd.from_pandas(df, npartitions=2)
    >>> ddf  # doctest: +SKIP
    Dask DataFrame Structure:
                       i       s
    npartitions=2
    0              int64  object
    2                ...     ...
    3                ...     ...
    Dask Name: from_pandas, 2 tasks

    >>> from dask.utils import tmpfile
    >>> from sqlalchemy import create_engine, text
    >>> with tmpfile() as f:
    ...     db = 'sqlite:///%s' %f
    ...     ddf.to_sql('test', db)
    ...     engine = create_engine(db, echo=False)
    ...     with engine.connect() as conn:
    ...         result = conn.execute(text("SELECT * FROM test")).fetchall()
    >>> result
    [(0, 0, '00'), (1, 1, '11'), (2, 2, '22'), (3, 3, '33')]
    """
    from dask.dataframe.io.sql import to_sql as _to_sql

    return _to_sql(
        df,
        name=name,
        uri=uri,
        schema=schema,
        if_exists=if_exists,
        index=index,
        index_label=index_label,
        chunksize=chunksize,
        dtype=dtype,
        method=method,
        compute=compute,
        parallel=parallel,
        engine_kwargs=engine_kwargs,
    )
