
    [c
                     >    d dl Z d dlmZ d dlmZ ddZeeddfdZdS )    N)partition_all)
no_defaultc                 \    |t          j        | |          S t          j        | ||          S N)	functoolsreduce)funcseqinitials      6lib/python3.11/site-packages/toolz/sandbox/parallel.py_reducer      s2     4c***c7333       c                 `   |dk    sJ || }t          ||          }|t          k    r% |t          j        t          |           |          }n& |t          j        t          | |          |          }t          |          }t          |          dk    r|d         S t          ||||          S )a  
    Reduce without guarantee of ordered reduction.

    inputs:

    ``binop``     - associative operator. The associative property allows us to
                    leverage a parallel map to perform reductions in parallel.
    ``seq``       - a sequence to be aggregated
    ``default``   - an identity element like 0 for ``add`` or 1 for mul

    ``map``       - an implementation of ``map``. This may be parallel and
                    determines how work is distributed.
    ``chunksize`` - Number of elements of ``seq`` that should be handled
                    within a single function call
    ``combine``   - Binary operator to combine two intermediate results.
                    If ``binop`` is of type (total, item) -> total
                    then ``combine`` is of type (total, total) -> total
                    Defaults to ``binop`` for common case of operators like add

    Fold chunks up the collection into blocks of size ``chunksize`` and then
    feeds each of these to calls to ``reduce``. This work is distributed
    with a call to ``map``, gathered back and then refolded to finish the
    computation. In this way ``fold`` specifies only how to chunk up data but
    leaves the distribution of this work to an externally provided ``map``
    function. This function can be sequential or rely on multithreading,
    multiprocessing, or even distributed solutions.

    If ``map`` intends to serialize functions it should be prepared to accept
    and serialize lambdas. Note that the standard ``pickle`` module fails
    here.

    Example
    -------

    >>> # Provide a parallel map to accomplish a parallel sum
    >>> from operator import add
    >>> fold(add, [1, 2, 3, 4], chunksize=2, map=map)
    10
       N)r   r   )map	chunksize)r   r   r   partialr   listlenfold)binopr
   defaultr   r   combinechunksresultss           r   r   r      s    P q= 9c**F * #gu--  #gug>>>  7mmG
7||q DqzGW#CCCCr   r   )r   toolz.itertoolzr   toolz.utilsr   r   r   r    r   r   <module>r       sx        ) ) ) ) ) ) " " " " " "4 4 4 4 (SC >D >D >D >D >D >Dr   