
    Edp6                     b   d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZ d dlmZ d dlmZ d d	lmZ d d
lmZ ddlmZmZmZmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z( g dZ)ddddZ*ddZ+ddZ,e,Z-ddZ.ddZ/ddZ0ddddZ1ddZ2ddZ3ddZ4ddZ5d dZ6ddZ7eZ8eZ9e.Z:dS )!    )	FiniteSet)Rational)Eq)Dummy)FallingFactorial)explog)sqrt)piecewise_fold)Integral)solveset   )probabilityexpectationdensitywheregivenpspacecdfPSpacecharacteristic_functionsamplesample_iterrandom_symbolsindependent	dependentsampling_densitymoment_generating_functionquantile	is_randomsample_stochastic_process)PEHr   r   r   r   r   r   r   r   variancestdskewnesskurtosis
covariancer   entropymedianr   r   correlationfactorial_momentmomentcmomentr   r   smomentr   r!   NT)evaluatec                    ddl m} |r  || |||                                          S  || |||                              t                    S )a[  
    Return the nth moment of a random expression about c.

    .. math::
        moment(X, c, n) = E((X-c)^{n})

    Default value of c is 0.

    Examples
    ========

    >>> from sympy.stats import Die, moment, E
    >>> X = Die('X', 6)
    >>> moment(X, 1, 6)
    -5/2
    >>> moment(X, 2)
    91/6
    >>> moment(X, 1) == E(X)
    True
    r   )Moment) sympy.stats.symbolic_probabilityr3   doitrewriter   )Xnc	conditionr1   kwargsr3   s          8lib/python3.11/site-packages/sympy/stats/rv_interface.pyr.   r.      sd    * 877777 1vaAy))..0006!Q9%%--h777    c                     t          |           r1t          |           t                      k    rddlm}  || |          S t          | d|fi |S )a  
    Variance of a random expression.

    .. math::
        variance(X) = E((X-E(X))^{2})

    Examples
    ========

    >>> from sympy.stats import Die, Bernoulli, variance
    >>> from sympy import simplify, Symbol

    >>> X = Die('X', 6)
    >>> p = Symbol('p')
    >>> B = Bernoulli('B', p, 1, 0)

    >>> variance(2*X)
    35/3

    >>> simplify(variance(B))
    p*(1 - p)
    r   )Variance   )r    r   r   r4   r?   r/   )r7   r:   r;   r?   s       r<   r%   r%   5   sf    . || &q		VXX- &======x9%%%1a--f---r=   c                 8    t          t          | |fi |          S )aK  
    Standard Deviation of a random expression

    .. math::
        std(X) = \sqrt(E((X-E(X))^{2}))

    Examples
    ========

    >>> from sympy.stats import Bernoulli, std
    >>> from sympy import Symbol, simplify

    >>> p = Symbol('p')
    >>> B = Bernoulli('B', p, 1, 0)

    >>> simplify(std(B))
    sqrt(p*(1 - p))
    )r
   r%   r7   r:   r;   s      r<   standard_deviationrC   S   s$    & I0000111r=   c                 8   t          | |fi |}|                    dt          d                    t          |t                    r-t          fd|                                D                       S t          t           ||                                S )an  
    Calculuates entropy of a probability distribution.

    Parameters
    ==========

    expression : the random expression whose entropy is to be calculated
    condition : optional, to specify conditions on random expression
    b: base of the logarithm, optional
       By default, it is taken as Euler's number

    Returns
    =======

    result : Entropy of the expression, a constant

    Examples
    ========

    >>> from sympy.stats import Normal, Die, entropy
    >>> X = Normal('X', 0, 1)
    >>> entropy(X)
    log(2)/2 + 1/2 + log(pi)/2

    >>> D = Die('D', 4)
    >>> entropy(D)
    log(4)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Entropy_(information_theory)
    .. [2] https://www.crmarsh.com/static/pdf/Charles_Marsh_Continuous_Entropy.pdf
    .. [3] http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf
    br   c                 8    g | ]}| t          |          z  S  )r	   ).0probbases     r<   
<listcomp>zentropy.<locals>.<listcomp>   s(    GGG$c$oo-GGGr=   )	r   getr   
isinstancedictsumvaluesr   r	   )exprr:   r;   pdfrJ   s       @r<   r*   r*   i   s    H $	
,
,V
,
,C::c3q66""D#t IGGGG#**,,GGGHHHCCIIt,,,---r=   c           	      >   t          |           rt          |           t                      k    s.t          |          r2t          |          t                      k    rddlm}  || ||          S t          | t          | |fi |z
  |t          ||fi |z
  z  |fi |S )aE  
    Covariance of two random expressions.

    Explanation
    ===========

    The expectation that the two variables will rise and fall together

    .. math::
        covariance(X,Y) = E((X-E(X)) (Y-E(Y)))

    Examples
    ========

    >>> from sympy.stats import Exponential, covariance
    >>> from sympy import Symbol

    >>> rate = Symbol('lambda', positive=True, real=True)
    >>> X = Exponential('X', rate)
    >>> Y = Exponential('Y', rate)

    >>> covariance(X, X)
    lambda**(-2)
    >>> covariance(X, Y)
    0
    >>> covariance(X, Y + rate*X)
    1/lambda
    r   )
Covariance)r    r   r   r4   rT   r   )r7   Yr:   r;   rT   s        r<   r)   r)      s    : 	! +fhh. +IaLL +VAYYRXRZRZEZ +??????z!Q	***	
[I0000	0	
[I0000	0	2    r=   c                 \    t          | ||fi |t          | |fi |t          ||fi |z  z  S )a  
    Correlation of two random expressions, also known as correlation
    coefficient or Pearson's correlation.

    Explanation
    ===========

    The normalized expectation that the two variables will rise
    and fall together

    .. math::
        correlation(X,Y) = E((X-E(X))(Y-E(Y)) / (\sigma_x  \sigma_y))

    Examples
    ========

    >>> from sympy.stats import Exponential, correlation
    >>> from sympy import Symbol

    >>> rate = Symbol('lambda', positive=True, real=True)
    >>> X = Exponential('X', rate)
    >>> Y = Exponential('Y', rate)

    >>> correlation(X, X)
    1
    >>> correlation(X, Y)
    0
    >>> correlation(X, Y + rate*X)
    1/sqrt(1 + lambda**(-2))
    )r)   r&   )r7   rU   r:   r;   s       r<   r,   r,      sS    > aI0000#a2M2Mf2M2M
1i""6""3# $ $r=   c                    ddl m} |r || ||                                          S  || ||                              t                    S )a\  
    Return the nth central moment of a random expression about its mean.

    .. math::
        cmoment(X, n) = E((X - E(X))^{n})

    Examples
    ========

    >>> from sympy.stats import Die, cmoment, variance
    >>> X = Die('X', 6)
    >>> cmoment(X, 3)
    0
    >>> cmoment(X, 2)
    35/12
    >>> cmoment(X, 2) == variance(X)
    True
    r   )CentralMoment)r4   rX   r5   r6   r   )r7   r8   r:   r1   r;   rX   s         r<   r/   r/      s`    & ?>>>>> 5}Q9--22444=Ay))11(;;;r=   c                 N    t          | |fi |}d|z  |z  t          | ||fi |z  S )a  
    Return the nth Standardized moment of a random expression.

    .. math::
        smoment(X, n) = E(((X - \mu)/\sigma_X)^{n})

    Examples
    ========

    >>> from sympy.stats import skewness, Exponential, smoment
    >>> from sympy import Symbol
    >>> rate = Symbol('lambda', positive=True, real=True)
    >>> Y = Exponential('Y', rate)
    >>> smoment(Y, 4)
    9
    >>> smoment(Y, 4) == smoment(3*Y, 4)
    True
    >>> smoment(Y, 3) == skewness(Y)
    True
    r   )r&   r/   )r7   r8   r:   r;   sigmas        r<   r0   r0      sB    * 9''''EeGa<1i::6::::r=   c                 "    t          | dfd|i|S )aA  
    Measure of the asymmetry of the probability distribution.

    Explanation
    ===========

    Positive skew indicates that most of the values lie to the right of
    the mean.

    .. math::
        skewness(X) = E(((X - E(X))/\sigma_X)^{3})

    Parameters
    ==========

    condition : Expr containing RandomSymbols
            A conditional expression. skewness(X, X>0) is skewness of X given X > 0

    Examples
    ========

    >>> from sympy.stats import skewness, Exponential, Normal
    >>> from sympy import Symbol
    >>> X = Normal('X', 0, 1)
    >>> skewness(X)
    0
    >>> skewness(X, X > 0) # find skewness given X > 0
    (-sqrt(2)/sqrt(pi) + 4*sqrt(2)/pi**(3/2))/(1 - 2/pi)**(3/2)

    >>> rate = Symbol('lambda', positive=True, real=True)
    >>> Y = Exponential('Y', rate)
    >>> skewness(Y)
    2
       r:   r0   rB   s      r<   r'   r'     s"    F 1a7797777r=   c                 "    t          | dfd|i|S )a  
    Characterizes the tails/outliers of a probability distribution.

    Explanation
    ===========

    Kurtosis of any univariate normal distribution is 3. Kurtosis less than
    3 means that the distribution produces fewer and less extreme outliers
    than the normal distribution.

    .. math::
        kurtosis(X) = E(((X - E(X))/\sigma_X)^{4})

    Parameters
    ==========

    condition : Expr containing RandomSymbols
            A conditional expression. kurtosis(X, X>0) is kurtosis of X given X > 0

    Examples
    ========

    >>> from sympy.stats import kurtosis, Exponential, Normal
    >>> from sympy import Symbol
    >>> X = Normal('X', 0, 1)
    >>> kurtosis(X)
    3
    >>> kurtosis(X, X > 0) # find kurtosis given X > 0
    (-4/pi - 12/pi**2 + 3)/(1 - 2/pi)**2

    >>> rate = Symbol('lamda', positive=True, real=True)
    >>> Y = Exponential('Y', rate)
    >>> kurtosis(Y)
    9

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Kurtosis
    .. [2] http://mathworld.wolfram.com/Kurtosis.html
       r:   r]   rB   s      r<   r(   r(   3  s"    T 1a7797777r=   c                 <    t          t          | |          fd|i|S )a  
    The factorial moment is a mathematical quantity defined as the expectation
    or average of the falling factorial of a random variable.

    .. math::
        factorial-moment(X, n) = E(X(X - 1)(X - 2)...(X - n + 1))

    Parameters
    ==========

    n: A natural number, n-th factorial moment.

    condition : Expr containing RandomSymbols
            A conditional expression.

    Examples
    ========

    >>> from sympy.stats import factorial_moment, Poisson, Binomial
    >>> from sympy import Symbol, S
    >>> lamda = Symbol('lamda')
    >>> X = Poisson('X', lamda)
    >>> factorial_moment(X, 2)
    lamda**2
    >>> Y = Binomial('Y', 2, S.Half)
    >>> factorial_moment(Y, 2)
    1/2
    >>> factorial_moment(Y, 2, Y > 1) # find factorial moment for Y > 1
    2

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Factorial_moment
    .. [2] http://mathworld.wolfram.com/FactorialMoment.html
    r:   )r   r   )r7   r8   r:   r;   s       r<   r-   r-   `  s+    J '1--MMMfMMMr=   c           	      x   t          |           s| S ddlm} ddlm} ddlm} t          t          |           |          rt          |           	                    |           }g } |j
                    D ]v\  }}	|	t          dd          k    r]d|	z
  t          |                               t          | |                    z   t          dd          k    r|                    |           wt          | S t          t          |           ||f          r}t          |           	                    |           }t!          d          }
t#          t%           ||
          t          dd          z
            |
t          |           j                  }|S t)          dt+          t          |                     z            )	aN  
    Calculuates the median of the probability distribution.

    Explanation
    ===========

    Mathematically, median of Probability distribution is defined as all those
    values of `m` for which the following condition is satisfied

    .. math::
        P(X\leq m) \geq  \frac{1}{2} \text{ and} \text{ } P(X\geq m)\geq \frac{1}{2}

    Parameters
    ==========

    X: The random expression whose median is to be calculated.

    Returns
    =======

    The FiniteSet or an Interval which contains the median of the
    random expression.

    Examples
    ========

    >>> from sympy.stats import Normal, Die, median
    >>> N = Normal('N', 3, 1)
    >>> median(N)
    {3}
    >>> D = Die('D')
    >>> median(D)
    {3, 4}

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Median#Probability_distributions

    r   )ContinuousPSpace)DiscretePSpace)FinitePSpacer   r@   xz#The median of %s is not implemeted.)r    sympy.stats.crvrb   sympy.stats.drvrc   sympy.stats.frvrd   rM   r   compute_cdfitemsr   r   r   appendr   r   r   r   setNotImplementedErrorstr)r7   r1   r;   rb   rc   rd   r   resultkeyvaluere   s              r<   r+   r+     s   R Q<< 000000......,,,,,,&))\** "Qii##A&&##)++ 	# 	#JCx1~~% #1u91II!!"Q**--+.19!Q+@ #c"""&!!&)).?@@ Qii##A&&#JJ.Q(1a..)@AA1fQiimTT
CCq		NNR
S
SSr=   c           	          t          | t          | |fi |z
  |t          ||fi |z
  z  |t          ||fi |z
  z  |fi |}t          | |fi |t          ||fi |z  t          ||fi |z  }||z  S )a%  
    Calculates the co-skewness of three random variables.

    Explanation
    ===========

    Mathematically Coskewness is defined as

    .. math::
        coskewness(X,Y,Z)=\frac{E[(X-E[X]) * (Y-E[Y]) * (Z-E[Z])]} {\sigma_{X}\sigma_{Y}\sigma_{Z}}

    Parameters
    ==========

    X : RandomSymbol
            Random Variable used to calculate coskewness
    Y : RandomSymbol
            Random Variable used to calculate coskewness
    Z : RandomSymbol
            Random Variable used to calculate coskewness
    condition : Expr containing RandomSymbols
            A conditional expression

    Examples
    ========

    >>> from sympy.stats import coskewness, Exponential, skewness
    >>> from sympy import symbols
    >>> p = symbols('p', positive=True)
    >>> X = Exponential('X', p)
    >>> Y = Exponential('Y', 2*p)
    >>> coskewness(X, Y, Y)
    0
    >>> coskewness(X, Y + X, Y + 2*X)
    16*sqrt(85)/85
    >>> coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3)
    9*sqrt(170)/85
    >>> coskewness(Y, Y, Y) == skewness(Y)
    True
    >>> coskewness(X, Y + p*X, Y + 2*p*X)
    4/(sqrt(1 + 1/(4*p**2))*sqrt(4 + 1/(4*p**2)))

    Returns
    =======

    coskewness : The coskewness of the three random variables

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Coskewness

    )r   r&   )r7   rU   Zr:   r;   numdens          r<   
coskewnessrv     s    l q;q)>>v>>>Ay33F3335Ay33F33356?K KCIK KC a
%
%f
%
%Ay(C(CF(C(C
Cq)&&v&&'Cs7Nr=   )r   N)N)T);
sympy.setsr   sympy.core.numbersr   sympy.core.relationalr   sympy.core.symbolr   (sympy.functions.combinatorial.factorialsr   &sympy.functions.elementary.exponentialr   r	   (sympy.functions.elementary.miscellaneousr
   $sympy.functions.elementary.piecewiser   sympy.integrals.integralsr   sympy.solvers.solvesetr   rvr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   __all__r.   r%   rC   r&   r*   r)   r,   r/   r0   r'   r(   r-   r+   rv   r"   r#   r$   rG   r=   r<   <module>r      s               ' ' ' ' ' ' $ $ $ $ $ $ # # # # # # E E E E E E = = = = = = = = 9 9 9 9 9 9 ? ? ? ? ? ? . . . . . . + + + + + +, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,< < <8$ 8 8 8 8 86. . . .<2 2 2 2( (. (. (. (.T$ $ $ $N $  $  $  $F<d < < < < <2; ; ; ;0#8 #8 #8 #8J*8 *8 *8 *8Z%N %N %N %NN=T =T =T =T@; ; ; ;| r=   