§
    E¯d¸  ã                   ó   — dd„Z d„ ZdS )é   c                 óŽ   — |                       ¦   «         } |                      |||z   ¦  «        }|                      ¦   «         }|| z
  S )ay  
    Takes as input a polynomial expression and the variable used to construct
    it and returns the difference between function's value when the input is
    incremented to 1 and the original function value. If you want an increment
    other than one supply it as a third argument.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.series.kauers import finite_diff
    >>> finite_diff(x**2, x)
    2*x + 1
    >>> finite_diff(y**3 + 2*y**2 + 3*y + 4, y)
    3*y**2 + 7*y + 6
    >>> finite_diff(x**2 + 3*x + 8, x, 2)
    4*x + 10
    >>> finite_diff(z**3 + 8*z, z, 3)
    9*z**2 + 27*z + 51
    )ÚexpandÚsubs)Ú
expressionÚvariableÚ	incrementÚexpression2s       ú3lib/python3.11/site-packages/sympy/series/kauers.pyÚfinite_diffr      sI   € ð* ×"Ò"Ñ$Ô$€JØ—/’/ (¨H°yÑ,@ÑAÔA€KØ×$Ò$Ñ&Ô&€KØ˜Ñ#Ð#ó    c                 ór   — | j         }| j        D ]'}|                     |d         |d         dz   ¦  «        }Œ(|S )a©  
    Takes as input a Sum instance and returns the difference between the sum
    with the upper index incremented by 1 and the original sum. For example,
    if S(n) is a sum, then finite_diff_kauers will return S(n + 1) - S(n).

    Examples
    ========

    >>> from sympy.series.kauers import finite_diff_kauers
    >>> from sympy import Sum
    >>> from sympy.abc import x, y, m, n, k
    >>> finite_diff_kauers(Sum(k, (k, 1, n)))
    n + 1
    >>> finite_diff_kauers(Sum(1/k, (k, 1, n)))
    1/(n + 1)
    >>> finite_diff_kauers(Sum((x*y**2), (x, 1, n), (y, 1, m)))
    (m + 1)**2*(n + 1)
    >>> finite_diff_kauers(Sum((x*y), (x, 1, m), (y, 1, n)))
    (m + 1)*(n + 1)
    é    éÿÿÿÿr   )ÚfunctionÚlimitsr   )Úsumr   Úls      r
   Úfinite_diff_kauersr      sB   € ð* Œ|€HØŒZð 3ð 3ˆØ—=’=  1¤ q¨¤v°¡zÑ2Ô2ˆˆØ€Or   N)r   )r   r   © r   r
   ú<module>r      s2   ðð$ð $ð $ð $ð4ð ð ð ð r   