
    Ed                     <    d Z ddlmZ ddlmZ ddlmZ d Zd	dZdS )
aB  
Convergence acceleration / extrapolation methods for series and
sequences.

References:
Carl M. Bender & Steven A. Orszag, "Advanced Mathematical Methods for
Scientists and Engineers: Asymptotic Methods and Perturbation Theory",
Springer 1999. (Shanks transformation: pp. 368-375, Richardson
extrapolation: pp. 375-377.)
    )Integer)S)	factorialc           	      >   t           j        }t          d|dz             D ]|}||                     |t	          ||z                                                       ||z   |z  z  t           j        ||z   z  z  t          |          t          ||z
            z  z  z  }}|S )a  
    Calculate an approximation for lim k->oo A(k) using Richardson
    extrapolation with the terms A(n), A(n+1), ..., A(n+N+1).
    Choosing N ~= 2*n often gives good results.

    Examples
    ========

    A simple example is to calculate exp(1) using the limit definition.
    This limit converges slowly; n = 100 only produces two accurate
    digits:

        >>> from sympy.abc import n
        >>> e = (1 + 1/n)**n
        >>> print(round(e.subs(n, 100).evalf(), 10))
        2.7048138294

    Richardson extrapolation with 11 appropriately chosen terms gives
    a value that is accurate to the indicated precision:

        >>> from sympy import E
        >>> from sympy.series.acceleration import richardson
        >>> print(round(richardson(e, n, 10, 20).evalf(), 10))
        2.7182818285
        >>> print(round(E.evalf(), 10))
        2.7182818285

    Another useful application is to speed up convergence of series.
    Computing 100 terms of the zeta(2) series 1/k**2 yields only
    two accurate digits:

        >>> from sympy.abc import k, n
        >>> from sympy import Sum
        >>> A = Sum(k**-2, (k, 1, n))
        >>> print(round(A.subs(n, 100).evalf(), 10))
        1.6349839002

    Richardson extrapolation performs much better:

        >>> from sympy import pi
        >>> print(round(richardson(A, n, 10, 20).evalf(), 10))
        1.6449340668
        >>> print(round(((pi**2)/6).evalf(), 10))     # Exact value
        1.6449340668

    r      )r   Zerorangesubsr   doitNegativeOner   )AknNsjs         9lib/python3.11/site-packages/sympy/series/acceleration.py
richardsonr      s    ^ 	
A1a!e__ J J	affQA'',,..!a%!;ma!e$%(1!yQ7G7G(GI 	JH    r   c                 P     fdt          ||z   dz             D             }|dd         }t          d|dz             D ]]}t          |||z   dz             D ]:}||dz
           ||         ||dz            }
}	}|
|z  |	dz  z
  |
|z   d|	z  z
  z  ||<   ;|dd         }^||         S )a7  
    Calculate an approximation for lim k->oo A(k) using the n-term Shanks
    transformation S(A)(n). With m > 1, calculate the m-fold recursive
    Shanks transformation S(S(...S(A)...))(n).

    The Shanks transformation is useful for summing Taylor series that
    converge slowly near a pole or singularity, e.g. for log(2):

        >>> from sympy.abc import k, n
        >>> from sympy import Sum, Integer
        >>> from sympy.series.acceleration import shanks
        >>> A = Sum(Integer(-1)**(k+1) / k, (k, 1, n))
        >>> print(round(A.subs(n, 100).doit().evalf(), 10))
        0.6881721793
        >>> print(round(shanks(A, n, 25).evalf(), 10))
        0.6931396564
        >>> print(round(shanks(A, n, 25, 5).evalf(), 10))
        0.6931471806

    The correct value is 0.6931471805599453094172321215.
    c                 z    g | ]7}                     t          |                                                    8S  )r
   r   r   ).0r   r   r   s     r   
<listcomp>zshanks.<locals>.<listcomp>]   s9    DDDaQVVAwqzz""''))DDDr      Nr   )r	   )r   r   r   mtabletable2ir   xyzs   ``         r   shanksr#   G   s    , EDDDD5Q3C3CDDDE111XF1a!e__  q!a%!)$$ 	5 	5AAElE!HeAEl!qA1q!tA!4F1IIqqq	8Or   N)r   )	__doc__sympy.core.numbersr   sympy.core.singletonr   (sympy.functions.combinatorial.factorialsr   r   r#   r   r   r   <module>r(      su   	 	 ' & & & & & " " " " " " > > > > > >3 3 3l     r   