
    EdUF                     d   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ dd	lmZ dd
lmZ  G d de          Z G d de          Z G d de          Z G d d          Z G d dee          Z e            xZe_         G d dee          Z e            xZe_        dS )zDomains of Gaussian type.    )I)CoercionFailed)ZZ)QQ)AlgebraicField)Domain)DomainElement)Field)Ringc                        e Zd ZdZdZdZdZddZe fd            Z	d Z
d Zd	 Zd
 Zd Zd Zd Zd Zed             Zd ZeZd Zd Zd ZeZd Zd Zd Zd Zd Zd Zd Zd Z d Z! xZ"S )GaussianElementz1Base class for elements of Gaussian type domains.N)xyr   c                 j    | j         j        }|                      ||           ||                    S N)baseconvertnew)clsr   r   convs       Clib/python3.11/site-packages/sympy/polys/domains/gaussiandomains.py__new__zGaussianElement.__new__   s0    xwwttAwwQ(((    c                 f    t                                          |           }||_        ||_        |S )z0Create a new GaussianElement of the same domain.)superr   r   r   )r   r   r   obj	__class__s       r   r   zGaussianElement.new   s-     ggooc""
r   c                     | j         S )z4The domain that this is an element of (ZZ_I or QQ_I))_parentselfs    r   parentzGaussianElement.parent!   s
    |r   c                 8    t          | j        | j        f          S r   )hashr   r   r    s    r   __hash__zGaussianElement.__hash__%   s    TVTV$%%%r   c                 z    t          || j                  r | j        |j        k    o| j        |j        k    S t          S r   )
isinstancer   r   r   NotImplementedr!   others     r   __eq__zGaussianElement.__eq__(   s9    eT^,, 	"6UW$:57)::!!r   c                 v    t          |t                    st          S | j        | j        g|j        |j        gk     S r   )r'   r   r(   r   r   r)   s     r   __lt__zGaussianElement.__lt__.   s7    %11 	"!!57EG"444r   c                     | S r    r    s    r   __pos__zGaussianElement.__pos__3   s    r   c                 F    |                      | j         | j                   S r   r   r   r   r    s    r   __neg__zGaussianElement.__neg__6   s    xx$&)))r   c                 @    | j         j        d| j        d| j        dS )N(z, ))r   repr   r   r    s    r   __repr__zGaussianElement.__repr__9   s&    #|///@@r   c                 P    t          | j                            |                     S r   )strr   to_sympyr    s    r   __str__zGaussianElement.__str__<   s     4<((..///r   c                     t          ||           s-	 | j                            |          }n# t          $ r Y dS w xY w|j        |j        fS )N)NN)r'   r   r   r   r   r   )r   r*   s     r   _get_xyzGaussianElement._get_xy?   sa    %%% 	""++E22! " " "!zz"ws   - 
;;c                     |                      |          \  }}|&|                     | j        |z   | j        |z             S t          S r   r>   r   r   r   r(   r!   r*   r   r   s       r   __add__zGaussianElement.__add__H   E    ||E""1 	"88DFQJ
333!!r   c                     |                      |          \  }}|&|                     | j        |z
  | j        |z
            S t          S r   r@   rA   s       r   __sub__zGaussianElement.__sub__Q   rC   r   c                     |                      |          \  }}|&|                     || j        z
  || j        z
            S t          S r   r@   rA   s       r   __rsub__zGaussianElement.__rsub__X   sE    ||E""1 	"88AJDF
333!!r   c                     |                      |          \  }}|<|                     | j        |z  | j        |z  z
  | j        |z  | j        |z  z             S t          S r   r@   rA   s       r   __mul__zGaussianElement.__mul___   s[    ||E""1 	"88DF1Htvax/DF1H1DEEE!!r   c                     |dk    r|                      dd          S |dk     rd| z  | }} |dk    r| S | }|dz  r| n| j        j        }|dz  }|r||z  }|dz  r||z  }|dz  }||S )Nr         )r   r   one)r!   exppow2prods       r   __pow__zGaussianElement.__pow__h   s    !8 	"88Aq>>!7 	%$#D!8 	KQw4ttDL$4	 	DLDQw AIC	  	
 r   c                 R    t          | j                  pt          | j                  S r   )boolr   r   r    s    r   __bool__zGaussianElement.__bool__y   s    DF||+tDF||+r   c                     | j         dk    r| j        dk    rdndS | j         dk     r| j        dk     rdndS | j        dk    rdndS )zIReturn quadrant index 0-3.

        0 is included in quadrant 0.
        r   rK   rL      )r   r   r    s    r   quadrantzGaussianElement.quadrant|   s_    
 6A: 	+
)11)VaZ 	+
)11)!*11*r   c                     	 | j                             |          }|                    |           S # t          $ r
 t          cY S w xY wr   )r   r   
__divmod__r   r(   r)   s     r   __rdivmod__zGaussianElement.__rdivmod__   s[    	*L((//E ##D)))  	" 	" 	"!!!!	"   1 AAc                     	 t                               |          }|                    |           S # t          $ r
 t          cY S w xY wr   )QQ_Ir   __truediv__r   r(   r)   s     r   __rtruediv__zGaussianElement.__rtruediv__   sW    	+LL''E $$T***  	" 	" 	"!!!!	"r[   c                 R    |                      |          }|t          u r|n|d         S Nr   rY   r(   r!   r*   qrs      r   __floordiv__zGaussianElement.__floordiv__   +    __U##>)4rrr!u4r   c                 R    |                      |          }|t          u r|n|d         S ra   rZ   r(   rc   s      r   __rfloordiv__zGaussianElement.__rfloordiv__   -    e$$>)4rrr!u4r   c                 R    |                      |          }|t          u r|n|d         S NrK   rb   rc   s      r   __mod__zGaussianElement.__mod__   rf   r   c                 R    |                      |          }|t          u r|n|d         S rl   rh   rc   s      r   __rmod__zGaussianElement.__rmod__   rj   r   )r   )#__name__
__module____qualname____doc__r   r   	__slots__r   classmethodr   r"   r%   r+   r-   r0   r3   r8   r<   r>   rB   __radd__rE   rG   rI   __rmul__rQ   rT   rW   rZ   r_   re   ri   rm   ro   __classcell__)r   s   @r   r   r      s       ;;DGI) ) ) )     [  & & &" " "5 5 5
  * * *A A A0 0 0     [ " " " H" " "" " "" " " H  ", , ,
+ 
+ 
+* * *+ + +5 5 55 5 55 5 55 5 5 5 5 5 5r   r   c                   "    e Zd ZdZeZd Zd ZdS )GaussianIntegerzGaussian integer: domain element for :ref:`ZZ_I`

        >>> from sympy import ZZ_I
        >>> z = ZZ_I(2, 3)
        >>> z
        (2 + 3*I)
        >>> type(z)
        <class 'sympy.polys.domains.gaussiandomains.GaussianInteger'>
    c                 <    t                               |           |z  S )Return a Gaussian rational.)r]   r   r)   s     r   r^   zGaussianInteger.__truediv__   s    ||D!!%''r   c                 d   |s"t          d                    |                     |                     |          \  }}|t          S | j        |z  | j        |z  z   | j         |z  | j        |z  z   }}||z  ||z  z   }d|z  |z   d|z  z  }d|z  |z   d|z  z  }t          ||          }	|	| |	|z  z
  fS )Nzdivmod({}, 0)rL   )ZeroDivisionErrorformatr>   r(   r   r   rz   )
r!   r*   r   r   abcqxqyqs
             r   rY   zGaussianInteger.__divmod__   s     	B#O$:$:4$@$@AAA||E""1 	"!! vax$&("TVGAIq$81aC!A#I cAg1Q3cAg1Q3B## $5.  r   N)rp   rq   rr   rs   r   r   r^   rY   r/   r   r   rz   rz      sC          D( ( (! ! ! ! !r   rz   c                   "    e Zd ZdZeZd Zd ZdS )GaussianRationala  Gaussian rational: domain element for :ref:`QQ_I`

        >>> from sympy import QQ_I, QQ
        >>> z = QQ_I(QQ(2, 3), QQ(4, 5))
        >>> z
        (2/3 + 4/5*I)
        >>> type(z)
        <class 'sympy.polys.domains.gaussiandomains.GaussianRational'>
    c                    |s"t          d                    |                     |                     |          \  }}|t          S ||z  ||z  z   }t	          | j        |z  | j        |z  z   |z  | j         |z  | j        |z  z   |z            S )r|   z{} / 0)r~   r   r>   r(   r   r   r   )r!   r*   r   r   r   s        r   r^   zGaussianRational.__truediv__   s     	;#HOOD$9$9:::||E""1 	"!!aC!A#IDF1H!4a 7"&&TVAX!5q 8: : 	:r   c                     	 | j                             |          }n# t          $ r
 t          cY S w xY w|s"t	          d                    |                     | |z  t          j        fS )Nz{} % 0)r   r   r   r(   r~   r   r]   zeror)   s     r   rY   zGaussianRational.__divmod__   sx    	"L((//EE 	" 	" 	"!!!!	" 	)#HOOD$9$9::::ty((s    11N)rp   rq   rr   rs   r   r   r^   rY   r/   r   r   r   r      sC          D
: 
: 
:) ) ) ) )r   r   c                       e Zd ZdZdZdZdZdZdZd Z	d Z
d Zd Zd Zd	 Zd
 Zd Zd Zd Zd Zd Zd Zd Zd ZdS )GaussianDomainz Base class for Gaussian domains.NTc                 l    | j         j        } ||j                  t           ||j                  z  z   S )z!Convert ``a`` to a SymPy object. )domr;   r   r   r   )r!   r   r   s      r   r;   zGaussianDomain.to_sympy   s/    x tACyy1TT!#YY;&&r   c                 x   |                                 \  }}| j                            |          }|s|                     |d          S |                                \  }}| j                            |          }|t
          u r|                     ||          S t          d                    |                    )z)Convert a SymPy object to ``self.dtype``.r   z{} is not Gaussian)as_coeff_Addr   
from_sympyr   as_coeff_Mulr   r   r   )r!   r   rr   r   r   s         r   r   zGaussianDomain.from_sympy  s    ~~1H"" 	"88Aq>>!~~1H""6 	A88Aq>>! !5!<!<Q!?!?@@@r   c                      | j         | S )z$Inject generators into this domain. )	poly_ring)r!   genss     r   injectzGaussianDomain.inject  s    t~t$$r   c                 F    | j         |                                          }|S r   )unitsrW   )r!   dunits      r   canonical_unitzGaussianDomain.canonical_unit  s    z1::<<-(r   c                     dS z/Returns ``False`` for any ``GaussianElement``. Fr/   r!   elements     r   is_negativezGaussianDomain.is_negative      ur   c                     dS r   r/   r   s     r   is_positivezGaussianDomain.is_positive  r   r   c                     dS r   r/   r   s     r   is_nonnegativezGaussianDomain.is_nonnegative   r   r   c                     dS r   r/   r   s     r   is_nonpositivezGaussianDomain.is_nonpositive$  r   r   c                      | |          S )z%Convert a GMPY mpz to ``self.dtype``.r/   K1r   K0s      r   from_ZZ_gmpyzGaussianDomain.from_ZZ_gmpy(      r!uur   c                      | |          S z.Convert a ZZ_python element to ``self.dtype``.r/   r   s      r   from_ZZzGaussianDomain.from_ZZ,  r   r   c                      | |          S r   r/   r   s      r   from_ZZ_pythonzGaussianDomain.from_ZZ_python0  r   r   c                      | |          S z%Convert a GMPY mpq to ``self.dtype``.r/   r   s      r   from_QQzGaussianDomain.from_QQ4  r   r   c                      | |          S r   r/   r   s      r   from_QQ_gmpyzGaussianDomain.from_QQ_gmpy8  r   r   c                      | |          S )z.Convert a QQ_python element to ``self.dtype``.r/   r   s      r   from_QQ_pythonzGaussianDomain.from_QQ_python<  r   r   c                     |j         j        d         t          k    r(|                     |                    |                    S dS )z9Convert an element from ZZ<I> or QQ<I> to ``self.dtype``.r   N)extargsr   r   r;   r   s      r   from_AlgebraicFieldz"GaussianDomain.from_AlgebraicField@  s=    6;q>Q 	1==Q000	1 	1r   )rp   rq   rr   rs   r   is_Numericalis_Exacthas_assoc_Ringhas_assoc_Fieldr;   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r/   r   r   r   r      s       **
CLHNO' ' '
A A A% % %                      1 1 1 1 1r   r   c                      e Zd ZdZeZeZ e ed           ed                    Z e ed           ed                    Z	 e ed           ed                    Z
e	e
e	 e
 fZdZdZdZd Zd Zd Zd	 Zd
 Zd Zd Zd ZdS )GaussianIntegerRinga{
  Ring of Gaussian integers ``ZZ_I``

    The :ref:`ZZ_I` domain represents the `Gaussian integers`_ `\mathbb{Z}[i]`
    as a :py:class:`~.Domain` in the domain system (see
    :ref:`polys-domainsintro`).

    By default a :py:class:`~.Poly` created from an expression with
    coefficients that are combinations of integers and ``I`` (`\sqrt{-1}`)
    will have the domain :ref:`ZZ_I`.

    >>> from sympy import Poly, Symbol, I
    >>> x = Symbol('x')
    >>> p = Poly(x**2 + I)
    >>> p
    Poly(x**2 + I, x, domain='ZZ_I')
    >>> p.domain
    ZZ_I

    The :ref:`ZZ_I` domain can be used to factorise polynomials that are
    reducible over the Gaussian integers.

    >>> from sympy import factor
    >>> factor(x**2 + 1)
    x**2 + 1
    >>> factor(x**2 + 1, domain='ZZ_I')
    (x - I)*(x + I)

    The corresponding `field of fractions`_ is the domain of the Gaussian
    rationals :ref:`QQ_I`. Conversely :ref:`ZZ_I` is the `ring of integers`_
    of :ref:`QQ_I`.

    >>> from sympy import ZZ_I, QQ_I
    >>> ZZ_I.get_field()
    QQ_I
    >>> QQ_I.get_ring()
    ZZ_I

    When using the domain directly :ref:`ZZ_I` can be used as a constructor.

    >>> ZZ_I(3, 4)
    (3 + 4*I)
    >>> ZZ_I(5)
    (5 + 0*I)

    The domain elements of :ref:`ZZ_I` are instances of
    :py:class:`~.GaussianInteger` which support the rings operations
    ``+,-,*,**``.

    >>> z1 = ZZ_I(5, 1)
    >>> z2 = ZZ_I(2, 3)
    >>> z1
    (5 + 1*I)
    >>> z2
    (2 + 3*I)
    >>> z1 + z2
    (7 + 4*I)
    >>> z1 * z2
    (7 + 17*I)
    >>> z1 ** 2
    (24 + 10*I)

    Both floor (``//``) and modulo (``%``) division work with
    :py:class:`~.GaussianInteger` (see the :py:meth:`~.Domain.div` method).

    >>> z3, z4 = ZZ_I(5), ZZ_I(1, 3)
    >>> z3 // z4  # floor division
    (1 + -1*I)
    >>> z3 % z4   # modulo division (remainder)
    (1 + -2*I)
    >>> (z3//z4)*z4 + z3%z4 == z3
    True

    True division (``/``) in :ref:`ZZ_I` gives an element of :ref:`QQ_I`. The
    :py:meth:`~.Domain.exquo` method can be used to divide in :ref:`ZZ_I` when
    exact division is possible.

    >>> z1 / z2
    (1 + -1*I)
    >>> ZZ_I.exquo(z1, z2)
    (1 + -1*I)
    >>> z3 / z4
    (1/2 + -3/2*I)
    >>> ZZ_I.exquo(z3, z4)
    Traceback (most recent call last):
        ...
    ExactQuotientFailed: (1 + 3*I) does not divide (5 + 0*I) in ZZ_I

    The :py:meth:`~.Domain.gcd` method can be used to compute the `gcd`_ of any
    two elements.

    >>> ZZ_I.gcd(ZZ_I(10), ZZ_I(2))
    (2 + 0*I)
    >>> ZZ_I.gcd(ZZ_I(5), ZZ_I(2, 1))
    (2 + 1*I)

    .. _Gaussian integers: https://en.wikipedia.org/wiki/Gaussian_integer
    .. _gcd: https://en.wikipedia.org/wiki/Greatest_common_divisor

    r   rK   ZZ_ITc                     dS )zFor constructing ZZ_I.Nr/   r    s    r   __init__zGaussianIntegerRing.__init__        r   c                     | S z)Returns a ring associated with ``self``. r/   r    s    r   get_ringzGaussianIntegerRing.get_ring      r   c                     t           S z*Returns a field associated with ``self``. )r]   r    s    r   	get_fieldzGaussianIntegerRing.get_field      r   c                     |                      |          |z  }t          fd|D                       }|r|f|z   n|S )zReturn first quadrant element associated with ``d``.

        Also multiply the other arguments by the same power of i.
        c              3   "   K   | ]	}|z  V  
d S r   r/   ).0r   r   s     r   	<genexpr>z0GaussianIntegerRing.normalize.<locals>.<genexpr>  s'      **QtV******r   )r   tuple)r!   r   r   r   s      @r   	normalizezGaussianIntegerRing.normalize  sX    
 ""1%%	T	****T*****")td{{)r   c                 B    |r	|||z  }}|	|                      |          S )z-Greatest common divisor of a and b over ZZ_I.)r   r!   r   r   s      r   gcdzGaussianIntegerRing.gcd  s3     	a!eqA  	~~a   r   c                 :    ||z  |                      ||          z  S )z+Least common multiple of a and b over ZZ_I.)r   r   s      r   lcmzGaussianIntegerRing.lcm  s    A$((1a..((r   c                     |S )zConvert a ZZ_I element to ZZ_I.r/   r   s      r   from_GaussianIntegerRingz,GaussianIntegerRing.from_GaussianIntegerRing      r   c                     |                      t          j        |j                  t          j        |j                            S )zConvert a QQ_I element to ZZ_I.)r   r   r   r   r   r   s      r   from_GaussianRationalFieldz.GaussianIntegerRing.from_GaussianRationalField  s*    vvbjoorz!#777r   N)rp   rq   rr   rs   r   r   rz   dtyper   rM   	imag_unitr   r7   is_GaussianRingis_ZZ_Ir   r   r   r   r   r   r   r   r/   r   r   r   r   F  s)       b bF CE5A1D
%1rr!uu

CbbeeRRUU##I)cTI:.E
COG% % %    * * *! ! !) ) )  8 8 8 8 8r   r   c                      e Zd ZdZeZeZ e ed           ed                    Z e ed           ed                    Z	 e ed           ed                    Z
e	e
e	 e
 fZdZdZdZd Zd Zd Zd	 Zd
 Zd Zd Zd ZdS )GaussianRationalFielda  Field of Gaussian rationals ``QQ_I``

    The :ref:`QQ_I` domain represents the `Gaussian rationals`_ `\mathbb{Q}(i)`
    as a :py:class:`~.Domain` in the domain system (see
    :ref:`polys-domainsintro`).

    By default a :py:class:`~.Poly` created from an expression with
    coefficients that are combinations of rationals and ``I`` (`\sqrt{-1}`)
    will have the domain :ref:`QQ_I`.

    >>> from sympy import Poly, Symbol, I
    >>> x = Symbol('x')
    >>> p = Poly(x**2 + I/2)
    >>> p
    Poly(x**2 + I/2, x, domain='QQ_I')
    >>> p.domain
    QQ_I

    The polys option ``gaussian=True`` can be used to specify that the domain
    should be :ref:`QQ_I` even if the coefficients do not contain ``I`` or are
    all integers.

    >>> Poly(x**2)
    Poly(x**2, x, domain='ZZ')
    >>> Poly(x**2 + I)
    Poly(x**2 + I, x, domain='ZZ_I')
    >>> Poly(x**2/2)
    Poly(1/2*x**2, x, domain='QQ')
    >>> Poly(x**2, gaussian=True)
    Poly(x**2, x, domain='QQ_I')
    >>> Poly(x**2 + I, gaussian=True)
    Poly(x**2 + I, x, domain='QQ_I')
    >>> Poly(x**2/2, gaussian=True)
    Poly(1/2*x**2, x, domain='QQ_I')

    The :ref:`QQ_I` domain can be used to factorise polynomials that are
    reducible over the Gaussian rationals.

    >>> from sympy import factor, QQ_I
    >>> factor(x**2/4 + 1)
    (x**2 + 4)/4
    >>> factor(x**2/4 + 1, domain='QQ_I')
    (x - 2*I)*(x + 2*I)/4
    >>> factor(x**2/4 + 1, domain=QQ_I)
    (x - 2*I)*(x + 2*I)/4

    It is also possible to specify the :ref:`QQ_I` domain explicitly with
    polys functions like :py:func:`~.apart`.

    >>> from sympy import apart
    >>> apart(1/(1 + x**2))
    1/(x**2 + 1)
    >>> apart(1/(1 + x**2), domain=QQ_I)
    I/(2*(x + I)) - I/(2*(x - I))

    The corresponding `ring of integers`_ is the domain of the Gaussian
    integers :ref:`ZZ_I`. Conversely :ref:`QQ_I` is the `field of fractions`_
    of :ref:`ZZ_I`.

    >>> from sympy import ZZ_I, QQ_I, QQ
    >>> ZZ_I.get_field()
    QQ_I
    >>> QQ_I.get_ring()
    ZZ_I

    When using the domain directly :ref:`QQ_I` can be used as a constructor.

    >>> QQ_I(3, 4)
    (3 + 4*I)
    >>> QQ_I(5)
    (5 + 0*I)
    >>> QQ_I(QQ(2, 3), QQ(4, 5))
    (2/3 + 4/5*I)

    The domain elements of :ref:`QQ_I` are instances of
    :py:class:`~.GaussianRational` which support the field operations
    ``+,-,*,**,/``.

    >>> z1 = QQ_I(5, 1)
    >>> z2 = QQ_I(2, QQ(1, 2))
    >>> z1
    (5 + 1*I)
    >>> z2
    (2 + 1/2*I)
    >>> z1 + z2
    (7 + 3/2*I)
    >>> z1 * z2
    (19/2 + 9/2*I)
    >>> z2 ** 2
    (15/4 + 2*I)

    True division (``/``) in :ref:`QQ_I` gives an element of :ref:`QQ_I` and
    is always exact.

    >>> z1 / z2
    (42/17 + -2/17*I)
    >>> QQ_I.exquo(z1, z2)
    (42/17 + -2/17*I)
    >>> z1 == (z1/z2)*z2
    True

    Both floor (``//``) and modulo (``%``) division can be used with
    :py:class:`~.GaussianRational` (see :py:meth:`~.Domain.div`)
    but division is always exact so there is no remainder.

    >>> z1 // z2
    (42/17 + -2/17*I)
    >>> z1 % z2
    (0 + 0*I)
    >>> QQ_I.div(z1, z2)
    ((42/17 + -2/17*I), (0 + 0*I))
    >>> (z1//z2)*z2 + z1%z2 == z1
    True

    .. _Gaussian rationals: https://en.wikipedia.org/wiki/Gaussian_rational
    r   rK   r]   Tc                     dS )zFor constructing QQ_I.Nr/   r    s    r   r   zGaussianRationalField.__init__a  r   r   c                     t           S r   )r   r    s    r   r   zGaussianRationalField.get_ringd  r   r   c                     | S r   r/   r    s    r   r   zGaussianRationalField.get_fieldh  r   r   c                 6    t          | j        t                    S )z0Get equivalent domain as an ``AlgebraicField``. )r   r   r   r    s    r   as_AlgebraicFieldz'GaussianRationalField.as_AlgebraicFieldl  s    dh***r   c                     |                                  }|                    ||                     |          z            S )zGet the numerator of ``a``.)r   r   denom)r!   r   r   s      r   numerzGaussianRationalField.numerp  s0    }}||A

1-...r   c                     | j                                         }| j         }|                                 } |j         |j        |j                   |j        |j                            } |||j                  S )zGet the denominator of ``a``.)r   r   r   r   r   r   r   )r!   r   r   r   r   denom_ZZs         r   r   zGaussianRationalField.denomu  sh    X  X}}26("(13--!#77tHbg&&&r   c                 B    |                      |j        |j                  S )zConvert a ZZ_I element to QQ_I.r2   r   s      r   r   z.GaussianRationalField.from_GaussianIntegerRing}  s    vvac13r   c                     |S )zConvert a QQ_I element to QQ_I.r/   r   s      r   r   z0GaussianRationalField.from_GaussianRationalField  r   r   N)rp   rq   rr   rs   r   r   r   r   r   rM   r   r   r7   is_GaussianFieldis_QQ_Ir   r   r   r   r   r   r   r   r/   r   r   r   r     s*       s sh CE5A1D
%1rr!uu

CbbeeRRUU##I)cTI:.E
CG% % %    + + +/ / /
' ' '         r   r   N)rs   sympy.core.numbersr   sympy.polys.polyerrorsr   sympy.polys.domains.integerringr   !sympy.polys.domains.rationalfieldr   "sympy.polys.domains.algebraicfieldr   sympy.polys.domains.domainr   !sympy.polys.domains.domainelementr	   sympy.polys.domains.fieldr
   sympy.polys.domains.ringr   r   rz   r   r   r   r   r   r   r]   r/   r   r   <module>r      s                 1 1 1 1 1 1 . . . . . . 0 0 0 0 0 0 = = = = = = - - - - - - ; ; ; ; ; ; + + + + + + ) ) ) ) ) )X5 X5 X5 X5 X5m X5 X5 X5v%! %! %! %! %!o %! %! %!P )  )  )  )  )  )  )  )FO1 O1 O1 O1 O1 O1 O1 O1dU8 U8 U8 U8 U8.$ U8 U8 U8n "5!4!6!6 6c c c c cNE c c cJ #8"7"9"9 9r   