
    Edl                     .    d dl mZ d dlmZ ddZddZdS )    )S)PolyNc                    |dnd}|r| }t          | g|R i |} t          |g|R i |}| j        r|j        st          d          | j        |j        k    st          d          | j        }|                                 dk     s|                                dk     rdhS |                                 }|s|                                n|}t                      }|d         D ]\  }	}
|d         D ]\  }}
|	                                }|                                }||k    r5|	                                }|                                }||z
  j        sh|		                    ||dz
  z            }|	                    ||dz
  z            }||z
  t          ||z            z  }|j        s|dk     s||v r|dk    r|	|                    |          z
  j        s|                    |           |S )a=  Compute the *dispersion set* of two polynomials.

    For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
    and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:

    .. math::
        \operatorname{J}(f, g)
        & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
        &  = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}

    For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.

    Examples
    ========

    >>> from sympy import poly
    >>> from sympy.polys.dispersion import dispersion, dispersionset
    >>> from sympy.abc import x

    Dispersion set and dispersion of a simple polynomial:

    >>> fp = poly((x - 3)*(x + 3), x)
    >>> sorted(dispersionset(fp))
    [0, 6]
    >>> dispersion(fp)
    6

    Note that the definition of the dispersion is not symmetric:

    >>> fp = poly(x**4 - 3*x**2 + 1, x)
    >>> gp = fp.shift(-3)
    >>> sorted(dispersionset(fp, gp))
    [2, 3, 4]
    >>> dispersion(fp, gp)
    4
    >>> sorted(dispersionset(gp, fp))
    []
    >>> dispersion(gp, fp)
    -oo

    Computing the dispersion also works over field extensions:

    >>> from sympy import sqrt
    >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
    >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
    >>> sorted(dispersionset(fp, gp))
    [2]
    >>> sorted(dispersionset(gp, fp))
    [1, 4]

    We can even perform the computations for polynomials
    having symbolic coefficients:

    >>> from sympy.abc import a
    >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
    >>> sorted(dispersionset(fp))
    [0, 1]

    See Also
    ========

    dispersion

    References
    ==========

    .. [1] [ManWright94]_
    .. [2] [Koepf98]_
    .. [3] [Abramov71]_
    .. [4] [Man93]_
    NFTz!Polynomials need to be univariatez(Polynomials must have the same generator   r   )r   is_univariate
ValueErrorgendegreefactor_listsetLCis_zerocoeff_monomialr   
is_integershiftadd)pqgensargssamer	   fpfqJsunusedtmnanbnanm1bnm1alphas                      6lib/python3.11/site-packages/sympy/polys/dispersion.pydispersionsetr&      sE   R +55tD QAQA? >!/ ><=== 5AE> ECDDD
%C 	xxzzA~ a s
 
B $	,"B 	AU  	6A 	 	IAv

A

AAv BBG$  ##C!A#J//D##C!A#J//DD[AadGG+E# qy EQJ 1u a!''%..09 EE%LLLL+	. H    c                 d    t          | |g|R i |}|st          j        }nt          |          }|S )a  Compute the *dispersion* of polynomials.

    For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
    and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:

    .. math::
        \operatorname{dis}(f, g)
        & := \max\{ J(f,g) \cup \{0\} \} \\
        &  = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}

    and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.
    Note that we make the definition `\max\{\} := -\infty`.

    Examples
    ========

    >>> from sympy import poly
    >>> from sympy.polys.dispersion import dispersion, dispersionset
    >>> from sympy.abc import x

    Dispersion set and dispersion of a simple polynomial:

    >>> fp = poly((x - 3)*(x + 3), x)
    >>> sorted(dispersionset(fp))
    [0, 6]
    >>> dispersion(fp)
    6

    Note that the definition of the dispersion is not symmetric:

    >>> fp = poly(x**4 - 3*x**2 + 1, x)
    >>> gp = fp.shift(-3)
    >>> sorted(dispersionset(fp, gp))
    [2, 3, 4]
    >>> dispersion(fp, gp)
    4
    >>> sorted(dispersionset(gp, fp))
    []
    >>> dispersion(gp, fp)
    -oo

    The maximum of an empty set is defined to be `-\infty`
    as seen in this example.

    Computing the dispersion also works over field extensions:

    >>> from sympy import sqrt
    >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
    >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
    >>> sorted(dispersionset(fp, gp))
    [2]
    >>> sorted(dispersionset(gp, fp))
    [1, 4]

    We can even perform the computations for polynomials
    having symbolic coefficients:

    >>> from sympy.abc import a
    >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
    >>> sorted(dispersionset(fp))
    [0, 1]

    See Also
    ========

    dispersionset

    References
    ==========

    .. [1] [ManWright94]_
    .. [2] [Koepf98]_
    .. [3] [Abramov71]_
    .. [4] [Man93]_
    )r&   r   NegativeInfinitymax)r   r   r   r   r   js         r%   
dispersionr,      sF    X 	a*T***T**A FFHr'   )N)
sympy.corer   sympy.polysr   r&   r,    r'   r%   <module>r0      sf               z z z zzR R R R R Rr'   