
    Ed                     .    d dl mZ d Zd Zd ZefdZdS )    )as_intc                     t          |           } d| fd| dfdi}d}t          d| dz  dz             D ]$}|| |z
  dz   z  |z  }|x||| |z
  f<   || |z
  |f<   %|S )a  Return a dictionary containing pairs :math:`{(k1,k2) : C_kn}` where
    :math:`C_kn` are binomial coefficients and :math:`n=k1+k2`.

    Examples
    ========

    >>> from sympy.ntheory import binomial_coefficients
    >>> binomial_coefficients(9)
    {(0, 9): 1, (1, 8): 9, (2, 7): 36, (3, 6): 84,
     (4, 5): 126, (5, 4): 126, (6, 3): 84, (7, 2): 36, (8, 1): 9, (9, 0): 1}

    See Also
    ========

    binomial_coefficients_list, multinomial_coefficients
    r         r   rangendaks       9lib/python3.11/site-packages/sympy/ntheory/multinomial.pybinomial_coefficientsr      s    " 	q		A
QQFAA	A1adQh & &!a%!)_q $%%!QU(aAqkkH    c                     t          |           } dg| dz   z  }d}t          d| dz  dz             D ]}|| |z
  dz   z  |z  }|x||<   || |z
  <   |S )aL   Return a list of binomial coefficients as rows of the Pascal's
    triangle.

    Examples
    ========

    >>> from sympy.ntheory import binomial_coefficients_list
    >>> binomial_coefficients_list(9)
    [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]

    See Also
    ========

    binomial_coefficients, multinomial_coefficients
    r   r   r   r	   s       r   binomial_coefficients_listr      sw      	q		A	
q1uA	A1adQh  !a%!)_q !qQxxHr   c                    t          |           } t          |          }| s|ri S ddiS | dk    rt          |          S | d|z  k    r#|dk    rt          t          | |                    S |gdg| dz
  z  z   }t	          |          di}|rd}n| }|| dz
  k     r||         }|r
d||<   ||d<   |dk    r||dz   xx         dz  cc<   d}d}d}n/|dz  }|dz   }|t	          |                   }||xx         dz  cc<   t          ||           D ]B}||         r8||xx         dz  cc<   ||t	          |                   z  }||xx         dz  cc<   C|dxx         dz  cc<   ||z  ||d         z
  z  |t	          |          <   || dz
  k     |S )a  Return a dictionary containing pairs ``{(k1,k2,..,km) : C_kn}``
    where ``C_kn`` are multinomial coefficients such that
    ``n=k1+k2+..+km``.

    Examples
    ========

    >>> from sympy.ntheory import multinomial_coefficients
    >>> multinomial_coefficients(2, 5) # indirect doctest
    {(0, 5): 1, (1, 4): 5, (2, 3): 10, (3, 2): 10, (4, 1): 5, (5, 0): 1}

    Notes
    =====

    The algorithm is based on the following result:

    .. math::
        \binom{n}{k_1, \ldots, k_m} =
        \frac{k_1 + 1}{n - k_1} \sum_{i=2}^m \binom{n}{k_1 + 1, \ldots, k_i - 1, \ldots}

    Code contributed to Sage by Yann Laigle-Chapuy, copied with permission
    of the author.

    See Also
    ========

    binomial_coefficients_list, binomial_coefficients
     r   r   r   )r   r   dict!multinomial_coefficients_iteratortupler   )	mr
   trjtjstartvr   s	            r   multinomial_coefficientsr   7   s   : 	q		Aq		A  	IAwAv ($Q'''AaCx =AE =5a;;<<<	
qcQUmA	q1A 
a!e) -qT 	AaDAaD6 		a!eHHHMHHHAEAAFAEE%((AaDDDAIDDD ua 	 	At !	QuQxx[ !		!	2v1qt8,%((1 a!e) -2 Hr   c           	   #   
  K   t          |           } t          |          }| d|z  k     s|dk    r,t          | |          }|                                E d{V  dS t          ||          }i }|                                D ]!\  }}|| |t          d|                    <   "|}|gdg| dz
  z  z   } ||          } |t          d|                    }	|||	         fV  |rd}
n| }
|
| dz
  k     r||
         }|
r
d||
<   ||d<   |dk    r||
dz   xx         dz  cc<   d}
n|
dz  }
||
xx         dz  cc<   |dxx         dz  cc<    ||          } |t          d|                    }	|||	         fV  |
| dz
  k     dS dS )aq  multinomial coefficient iterator

    This routine has been optimized for `m` large with respect to `n` by taking
    advantage of the fact that when the monomial tuples `t` are stripped of
    zeros, their coefficient is the same as that of the monomial tuples from
    ``multinomial_coefficients(n, n)``. Therefore, the latter coefficients are
    precomputed to save memory and time.

    >>> from sympy.ntheory.multinomial import multinomial_coefficients
    >>> m53, m33 = multinomial_coefficients(5,3), multinomial_coefficients(3,3)
    >>> m53[(0,0,0,1,2)] == m53[(0,0,1,0,2)] == m53[(1,0,2,0,0)] == m33[(0,1,2)]
    True

    Examples
    ========

    >>> from sympy.ntheory.multinomial import multinomial_coefficients_iterator
    >>> it = multinomial_coefficients_iterator(20,3)
    >>> next(it)
    ((3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1)
    r   r   Nr   )r   r   itemsfilter)r   r
   _tuplemcmc1r   r   r   t1br   r   s               r   r   r      s     , 	q		Aq		A1Q3w #!q& #%a++88::%a++HHJJ 	- 	-DAq+,CvdA''((C1#Q-VAYYF6$##$$2a5k 	AAA!a%i 	1B !!Av !a%AQ!	aDDDAIDDDBvdB''((Ar!u+! !a%i 	 	 	 	 	r   N)sympy.utilities.miscr   r   r   r   r   r   r   r   r   <module>r)      sk    ' ' ' ' ' '  4  2G G GT 49 ; ; ; ; ; ;r   