
    Ed                         d dl mZ d dlmZ d dlmZmZ d dlmZ d dl	m
Z
 d dlmZmZmZ d dlmZ d ZddZd ZddZd ZdS )    )reduce)prod)igcdexigcdisprime)ZZ)gf_crtgf_crt1gf_crt2as_intc                 "    | |dz  k    r| S | |z
  S )zReturn the residual mod m such that it is within half of the modulus.

    >>> from sympy.ntheory.modular import symmetric_residue
    >>> symmetric_residue(1, 6)
    1
    >>> symmetric_residue(4, 6)
    -2
        )ams     5lib/python3.11/site-packages/sympy/ntheory/modular.pysymmetric_residuer      s"     	AF{ q5L    FTc                    |rDt          t          t          |                     } t          t          t          |                    }t          || t                    t          |           }|rZt          fdt          ||           D                       s1t          t          t          ||                     d|dS \  }|rt          |          |fS |fS )ak  Chinese Remainder Theorem.

    The moduli in m are assumed to be pairwise coprime.  The output
    is then an integer f, such that f = v_i mod m_i for each pair out
    of v and m. If ``symmetric`` is False a positive integer will be
    returned, else \|f\| will be less than or equal to the LCM of the
    moduli, and thus f may be negative.

    If the moduli are not co-prime the correct result will be returned
    if/when the test of the result is found to be incorrect. This result
    will be None if there is no solution.

    The keyword ``check`` can be set to False if it is known that the moduli
    are coprime.

    Examples
    ========

    As an example consider a set of residues ``U = [49, 76, 65]``
    and a set of moduli ``M = [99, 97, 95]``. Then we have::

       >>> from sympy.ntheory.modular import crt

       >>> crt([99, 97, 95], [49, 76, 65])
       (639985, 912285)

    This is the correct result because::

       >>> [639985 % m for m in [99, 97, 95]]
       [49, 76, 65]

    If the moduli are not co-prime, you may receive an incorrect result
    if you use ``check=False``:

       >>> crt([12, 6, 17], [3, 4, 2], check=False)
       (954, 1224)
       >>> [954 % m for m in [12, 6, 17]]
       [6, 0, 2]
       >>> crt([12, 6, 17], [3, 4, 2]) is None
       True
       >>> crt([3, 6], [2, 5])
       (5, 6)

    Note: the order of gf_crt's arguments is reversed relative to crt,
    and that solve_congruence takes residue, modulus pairs.

    Programmer's note: rather than checking that all pairs of moduli share
    no GCD (an O(n**2) test) and rather than factoring all moduli and seeing
    that there is no factor in common, a check that the result gives the
    indicated residuals is performed -- an O(n) operation.

    See Also
    ========

    solve_congruence
    sympy.polys.galoistools.gf_crt : low level crt routine used by this routine
    c              3   6   K   | ]\  }}||z  |z  k    V  d S Nr   ).0vr   results      r   	<genexpr>zcrt.<locals>.<genexpr>[   s4      ==41a1q5FQJ&======r   F)check	symmetric)
listmapr   r
   r	   r   allzipsolve_congruencer   )r   r   r   r   mmr   s        @r   crtr&      s    t  !VQ  VQ  Aq"F	aB  ====3q!99===== 	 %tC1II96 6 6F JFB 1 ,,b002:r   c                 ,    t          | t                    S )zFirst part of Chinese Remainder Theorem, for multiple application.

    Examples
    ========

    >>> from sympy.ntheory.modular import crt1
    >>> crt1([18, 42, 6])
    (4536, [252, 108, 756], [0, 2, 0])
    )r   r	   )r   s    r   crt1r(   g   s     1b>>r   c                 d    t          || |||t                    }|rt          ||          |fS ||fS )zSecond part of Chinese Remainder Theorem, for multiple application.

    Examples
    ========

    >>> from sympy.ntheory.modular import crt1, crt2
    >>> mm, e, s = crt1([18, 42, 6])
    >>> crt2([18, 42, 6], [0, 0, 0], mm, e, s)
    (0, 4536)
    )r   r	   r   )r   r   r%   esr   r   s          r   crt2r,   u   sB     Q2q!R((F 1 ,,b002:r   c                     d }| }|                     dd          }|                     dd          rd |D             }i }|D ]#\  }}||z  }||v r|||         k    r dS |||<   $d |                                D             }~t          d	 |D                       r,t          t	          |           \  }}t          |||d
          S d}|D ]}	 |||	          }| dS |\  }
}|
|z  }
|rt          |
|          |fS |
|fS )a  Compute the integer ``n`` that has the residual ``ai`` when it is
    divided by ``mi`` where the ``ai`` and ``mi`` are given as pairs to
    this function: ((a1, m1), (a2, m2), ...). If there is no solution,
    return None. Otherwise return ``n`` and its modulus.

    The ``mi`` values need not be co-prime. If it is known that the moduli are
    not co-prime then the hint ``check`` can be set to False (default=True) and
    the check for a quicker solution via crt() (valid when the moduli are
    co-prime) will be skipped.

    If the hint ``symmetric`` is True (default is False), the value of ``n``
    will be within 1/2 of the modulus, possibly negative.

    Examples
    ========

    >>> from sympy.ntheory.modular import solve_congruence

    What number is 2 mod 3, 3 mod 5 and 2 mod 7?

    >>> solve_congruence((2, 3), (3, 5), (2, 7))
    (23, 105)
    >>> [23 % m for m in [3, 5, 7]]
    [2, 3, 2]

    If you prefer to work with all remainder in one list and
    all moduli in another, send the arguments like this:

    >>> solve_congruence(*zip((2, 3, 2), (3, 5, 7)))
    (23, 105)

    The moduli need not be co-prime; in this case there may or
    may not be a solution:

    >>> solve_congruence((2, 3), (4, 6)) is None
    True

    >>> solve_congruence((2, 3), (5, 6))
    (5, 6)

    The symmetric flag will make the result be within 1/2 of the modulus:

    >>> solve_congruence((2, 3), (5, 6), symmetric=True)
    (-1, 6)

    See Also
    ========

    crt : high level routine implementing the Chinese Remainder Theorem

    c                     | \  }}|\  }}|||z
  |}}}t          t          |||g          fd|||fD             \  }}}|dk    r!t          ||          \  }	}
dk    rdS ||	z  }|||z  z   ||z  }}||fS )zReturn the tuple (a, m) which satisfies the requirement
        that n = a + i*m satisfy n = a1 + j*m1 and n = a2 = k*m2.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Method_of_successive_substitution
        c                     g | ]}|z  S r   r   )r   igs     r   
<listcomp>z5solve_congruence.<locals>.combine.<locals>.<listcomp>   s    +++A1a4+++r      N)r   r   r   )c1c2a1m1a2m2r   bcinv_a_r   r1   s               @r   combinez!solve_congruence.<locals>.combine   s     BBb2gra14!Q##++++!Q+++1a6 	 A,,KE1aAv tJABqDy"Q$1!tr   r   Fr   Tc                 P    g | ]#\  }}t          |          t          |          f$S r   r   r   rr   s      r   r2   z$solve_congruence.<locals>.<listcomp>   s-    444Avayy&))$444r   Nc                     g | ]	\  }}||f
S r   r   )r   r   rA   s      r   r2   z$solve_congruence.<locals>.<listcomp>   s     ...Aq!f...r   c              3   :   K   | ]\  }}t          |          V  d S r   r   r@   s      r   r   z#solve_congruence.<locals>.<genexpr>   s,      ))dawqzz))))))r   )r   r   )r   r3   )getitemsr"   r    r#   r&   r   )remainder_modulus_pairshintr>   rmr   uniqrA   r   rvrmins              r   r$   r$      s   h  , 
!Be,,Ixx ?44444  	 	DAqFADy Q<  44DGG.....
 ))b))))) 	?R>>DAqq!y>>>>	B 	 	WR 	EE1E 	.$Q**A--!tr   N)FT)F)	functoolsr   mathr   sympy.core.numbersr   r   sympy.ntheory.primetestr   sympy.polys.domainsr	   sympy.polys.galoistoolsr
   r   r   sympy.utilities.miscr   r   r&   r(   r,   r$   r   r   r   <module>rT      s                + + + + + + + + + + + + + + " " " " " " < < < < < < < < < < ' ' ' ' ' '  K K K K\     &w w w w wr   