
    Edh                     F    d dl mZ d dlmZmZ d dlmZ d	dZd
dZ	d
dZdS )    )defaultdict)multisetis_palindromic)as_int
   Nc                    t          |          }t          |           } |dk     rt          d          t          |           g }}||k    r.t          ||          \  }}|                    |           ||k    .|                    |           |                    | dk     r| n|           |                                 t          |          dz
  }|0||k    rt          d| d|d          ||k     rdg||z
  z  |dd<   |S )	a  
    Return a list of the digits of ``n`` in base ``b``. The first
    element in the list is ``b`` (or ``-b`` if ``n`` is negative).

    Examples
    ========

    >>> from sympy.ntheory.digits import digits
    >>> digits(35)
    [10, 3, 5]

    If the number is negative, the negative sign will be placed on the
    base (which is the first element in the returned list):

    >>> digits(-35)
    [-10, 3, 5]

    Bases other than 10 (and greater than 1) can be selected with ``b``:

    >>> digits(27, b=2)
    [2, 1, 1, 0, 1, 1]

    Use the ``digits`` keyword if a certain number of digits is desired:

    >>> digits(35, digits=4)
    [10, 0, 0, 3, 5]

    Parameters
    ==========

    n: integer
        The number whose digits are returned.

    b: integer
        The base in which digits are computed.

    digits: integer (or None for all digits)
        The number of digits to be returned (padded with zeros, if
        necessary).

       zb must be greater than 1r      NzFor z, at least z digits are needed.)r   
ValueErrorabsdivmodappendreverselen)nbdigitsxyrndigs          4lib/python3.11/site-packages/sympy/ntheory/digits.pyr   r      s1   V 	q		Aq		A1u 34441vvr11f 	!Q<<DAqHHQKKK 1f 	 	
	q1u#!!$$$			1vvz 	-f} - j@A444HJ J J -ftm,!A#    c           	          t          t          t          t          | |                                                              }||v r|                    |          n|                    |            |S )a  
    Return a dictionary whose keys are the digits of ``n`` in the
    given base, ``b``, with keys indicating the digits appearing in the
    number and values indicating how many times that digit appeared.

    Examples
    ========

    >>> from sympy.ntheory import count_digits

    >>> count_digits(1111339)
    {1: 4, 3: 2, 9: 1}

    The digits returned are always represented in base-10
    but the number itself can be entered in any format that is
    understood by Python; the base of the number can also be
    given if it is different than 10:

    >>> n = 0xFA; n
    250
    >>> count_digits(_)
    {0: 1, 2: 1, 5: 1}
    >>> count_digits(n, 16)
    {10: 1, 15: 1}

    The default dictionary will return a 0 for any digit that did
    not appear in the number. For example, which digits appear 7
    times in ``77!``:

    >>> from sympy import factorial
    >>> c77 = count_digits(factorial(77))
    >>> [i for i in range(10) if c77[i] == 7]
    [1, 3, 7, 9]
    )r   intr   r   itemspop)r   r   rvs      r   count_digitsr   H   s\    F 
S(6!Q<<006688	9	9Bb(BFF1IIIbffaRjjIr   c                 >    t          t          | |          d          S )a  return True if ``n`` is the same when read from left to right
    or right to left in the given base, ``b``.

    Examples
    ========

    >>> from sympy.ntheory import is_palindromic

    >>> all(is_palindromic(i) for i in (-11, 1, 22, 121))
    True

    The second argument allows you to test numbers in other
    bases. For example, 88 is palindromic in base-10 but not
    in base-8:

    >>> is_palindromic(88, 8)
    False

    On the other hand, a number can be palindromic in base-8 but
    not in base-10:

    >>> 0o121, is_palindromic(0o121)
    (81, False)

    Or it might be palindromic in both bases:

    >>> oct(121), is_palindromic(121, 8) and is_palindromic(121)
    ('0o171', True)

    r
   )_palindromicr   )r   r   s     r   r   r   p   s    > q!a(((r   )r   N)r   )
collectionsr   sympy.utilities.iterablesr   r   r!   sympy.utilities.miscr   r   r    r   r   <module>r&      s    # # # # # # N N N N N N N N ' ' ' ' ' '> > > >B% % % %P) ) ) ) ) )r   