
    Ed^!                         d Z ddlmZmZmZmZmZ ddlmZ ddl	m
Z
 ddlmZ d Zdd	Zd
 ZddZddZ G d d          Z G d de          ZdS )z Inference in propositional logic    )AndNot	conjunctsto_cnfBooleanFunction)ordered)sympify)import_modulec                     | du s| du r| S 	 | j         r| S | j        rt          | j        d                   S t          # t
          t          f$ r t	          d          w xY w)z
    The symbol in this literal (without the negation).

    Examples
    ========

    >>> from sympy.abc import A
    >>> from sympy.logic.inference import literal_symbol
    >>> literal_symbol(A)
    A
    >>> literal_symbol(~A)
    A

    TFr   z#Argument must be a boolean literal.)	is_Symbolis_Notliteral_symbolargs
ValueErrorAttributeError)literals    5lib/python3.11/site-packages/sympy/logic/inference.pyr   r   	   s      $ 'U* @ 	N> 	!',q/222J' @ @ @>???@s   =  = = !ANFc                 h   ||dk    r+t          d          }|d}n|dk    rt          d          d}|dk    rt          d          }|d}|dk    rdd	lm}  ||           S |dk    rdd	lm}  || |          S |dk    rdd
lm}  || |          S |dk    rddlm}  || ||          S t          )a  
    Check satisfiability of a propositional sentence.
    Returns a model when it succeeds.
    Returns {true: true} for trivially true expressions.

    On setting all_models to True, if given expr is satisfiable then
    returns a generator of models. However, if expr is unsatisfiable
    then returns a generator containing the single element False.

    Examples
    ========

    >>> from sympy.abc import A, B
    >>> from sympy.logic.inference import satisfiable
    >>> satisfiable(A & ~B)
    {A: True, B: False}
    >>> satisfiable(A & ~A)
    False
    >>> satisfiable(True)
    {True: True}
    >>> next(satisfiable(A & ~A, all_models=True))
    False
    >>> models = satisfiable((A >> B) & B, all_models=True)
    >>> next(models)
    {A: False, B: True}
    >>> next(models)
    {A: True, B: True}
    >>> def use_models(models):
    ...     for model in models:
    ...         if model:
    ...             # Do something with the model.
    ...             print(model)
    ...         else:
    ...             # Given expr is unsatisfiable.
    ...             print("UNSAT")
    >>> use_models(satisfiable(A >> ~A, all_models=True))
    {A: False}
    >>> use_models(satisfiable(A ^ A, all_models=True))
    UNSAT

    Npycosatzpycosat module is not presentdpll2	minisat22pysatdpllr   )dpll_satisfiable)pycosat_satisfiable)minisat22_satisfiable)
r
   ImportErrorsympy.logic.algorithms.dpllr   sympy.logic.algorithms.dpll2&sympy.logic.algorithms.pycosat_wrapperr   (sympy.logic.algorithms.minisat22_wrapperr   NotImplementedError)	expr	algorithm
all_modelsminimalr   r   r   r   r   s	            r   satisfiabler'   &   sR   T  	 I2 	 	** 	 !III% C!"ABBB  I+  g&& 	 IF @@@@@@@%%%	g	 @AAAAAAj111	i	 @NNNNNN""4444	k	! @RRRRRR$$T:w???
    c                 <    t          t          |                      S )ax  
    Check validity of a propositional sentence.
    A valid propositional sentence is True under every assignment.

    Examples
    ========

    >>> from sympy.abc import A, B
    >>> from sympy.logic.inference import valid
    >>> valid(A | ~A)
    True
    >>> valid(A | B)
    False

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Validity

    )r'   r   )r#   s    r   validr*   o   s    * 3t99%%%%r(   c                    ddl m dfd| v r| S t          |           }  |           st          d| z            |si }fd|                                D             }|                     |          }|v rt          |          S |rQd |                                D             }t          ||          rt          |          rdS nt          |          sd	S d
S )a+  
    Returns whether the given assignment is a model or not.

    If the assignment does not specify the value for every proposition,
    this may return None to indicate 'not obvious'.

    Parameters
    ==========

    model : dict, optional, default: {}
        Mapping of symbols to boolean values to indicate assignment.
    deep: boolean, optional, default: False
        Gives the value of the expression under partial assignments
        correctly. May still return None to indicate 'not obvious'.


    Examples
    ========

    >>> from sympy.abc import A, B
    >>> from sympy.logic.inference import pl_true
    >>> pl_true( A & B, {A: True, B: True})
    True
    >>> pl_true(A & B, {A: False})
    False
    >>> pl_true(A & B, {A: True})
    >>> pl_true(A & B, {A: True}, deep=True)
    >>> pl_true(A >> (B >> A))
    >>> pl_true(A >> (B >> A), deep=True)
    True
    >>> pl_true(A & ~A)
    >>> pl_true(A & ~A, deep=True)
    False
    >>> pl_true(A & B & (~A | ~B), {A: True})
    >>> pl_true(A & B & (~A | ~B), {A: True}, deep=True)
    False

    r   )Symbol)TFc                     t          |           s| v rdS t          | t                    sdS t          fd| j        D                       S )NTFc              3   .   K   | ]} |          V  d S N ).0arg	_validates     r   	<genexpr>z-pl_true.<locals>._validate.<locals>.<genexpr>   s+      77c99S>>777777r(   )
isinstancer   allr   )r#   r,   r3   booleans    r   r3   zpl_true.<locals>._validate   sa    dF## 	tw 	4$00 	57777TY777777r(   z$%s is not a valid boolean expressionc                 $    i | ]\  }}|v 	||S r0   r0   )r1   kvr7   s      r   
<dictcomp>zpl_true.<locals>.<dictcomp>   s(    <<<daqG|<Q<<<r(   c                     i | ]}|d S )Tr0   )r1   r9   s     r   r;   zpl_true.<locals>.<dictcomp>   s    111QD111r(   TFN)sympy.core.symbolr,   r	   r   itemssubsboolatomspl_truer*   r'   )r#   modeldeepresultr,   r3   r7   s       @@@r   rB   rB      sF   P )(((((G8 8 8 8 8 8 8 w 4==D9T?? H?$FGGG <<<<ekkmm<<<EYYuF F|| 11&,,..11165!! 	V}} t v&& u4r(   c                     |rt          |          }ng }|                    t          |                      t          t	          |            S )a  
    Check whether the given expr_set entail an expr.
    If formula_set is empty then it returns the validity of expr.

    Examples
    ========

    >>> from sympy.abc import A, B, C
    >>> from sympy.logic.inference import entails
    >>> entails(A, [A >> B, B >> C])
    False
    >>> entails(C, [A >> B, B >> C, A])
    True
    >>> entails(A >> B)
    False
    >>> entails(A >> (B >> A))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Logical_consequence

    )listappendr   r'   r   )r#   formula_sets     r   entailsrJ      sP    2  ;''s4yy!!!3,----r(   c                   B    e Zd ZdZddZd Zd Zd Zed             Z	dS )	KBz"Base class for all knowledge basesNc                 ^    t                      | _        |r|                     |           d S d S r/   )setclauses_tellselfsentences     r   __init__zKB.__init__   s7     	 IIh	  	 r(   c                     t           r/   r"   rQ   s     r   rP   zKB.tell       !!r(   c                     t           r/   rV   rR   querys     r   askzKB.ask   rW   r(   c                     t           r/   rV   rQ   s     r   retractz
KB.retract   rW   r(   c                 D    t          t          | j                            S r/   )rG   r   rO   )rR   s    r   clausesz
KB.clauses  s    GDM**+++r(   r/   )
__name__
__module____qualname____doc__rT   rP   r[   r]   propertyr_   r0   r(   r   rL   rL      sv        ,,       
" " "" " "" " " , , X, , ,r(   rL   c                   $    e Zd ZdZd Zd Zd ZdS )PropKBz=A KB for Propositional Logic.  Inefficient, with no indexing.c                 x    t          t          |                    D ]}| j                            |           dS )ai  Add the sentence's clauses to the KB

        Examples
        ========

        >>> from sympy.logic.inference import PropKB
        >>> from sympy.abc import x, y
        >>> l = PropKB()
        >>> l.clauses
        []

        >>> l.tell(x | y)
        >>> l.clauses
        [x | y]

        >>> l.tell(y)
        >>> l.clauses
        [y, x | y]

        N)r   r   rO   addrR   rS   cs      r   rP   zPropKB.tell	  sF    * 6(++,, 	! 	!AMa    	! 	!r(   c                 ,    t          || j                  S )a8  Checks if the query is true given the set of clauses.

        Examples
        ========

        >>> from sympy.logic.inference import PropKB
        >>> from sympy.abc import x, y
        >>> l = PropKB()
        >>> l.tell(x & ~y)
        >>> l.ask(x)
        True
        >>> l.ask(y)
        False

        )rJ   rO   rY   s     r   r[   z
PropKB.ask!  s      udm,,,r(   c                 x    t          t          |                    D ]}| j                            |           dS )am  Remove the sentence's clauses from the KB

        Examples
        ========

        >>> from sympy.logic.inference import PropKB
        >>> from sympy.abc import x, y
        >>> l = PropKB()
        >>> l.clauses
        []

        >>> l.tell(x | y)
        >>> l.clauses
        [x | y]

        >>> l.retract(x | y)
        >>> l.clauses
        []

        N)r   r   rO   discardri   s      r   r]   zPropKB.retract3  sF    * 6(++,, 	% 	%AM!!!$$$$	% 	%r(   N)r`   ra   rb   rc   rP   r[   r]   r0   r(   r   rf   rf     sG        GG! ! !0- - -$% % % % %r(   rf   )NFF)NFr/   )rc   sympy.logic.boolalgr   r   r   r   r   sympy.core.sortingr   sympy.core.sympifyr	   sympy.external.importtoolsr
   r   r'   r*   rB   rJ   rL   rf   r0   r(   r   <module>rr      s9   & & L L L L L L L L L L L L L L & & & & & & & & & & & & 4 4 4 4 4 4@ @ @:F F F FR& & &0F F F FR. . . .B, , , , , , , ,*C% C% C% C% C%R C% C% C% C% C%r(   