
    Ed                     (    d dl mZmZ d dlmZ d ZdS )    )SingularityFunction
DiracDelta)	integratec                    |                      t                    sdS t          | t                    rK| j        \  }}}|j        s|j        rt          |||dz             |dz   z  S |dv rt          |||dz             S | j        s| j        rD|                     t                    }t          ||          }|                    t                    S dS )aI  
    This function handles the indefinite integrations of Singularity functions.
    The ``integrate`` function calls this function internally whenever an
    instance of SingularityFunction is passed as argument.

    Explanation
    ===========

    The idea for integration is the following:

    - If we are dealing with a SingularityFunction expression,
      i.e. ``SingularityFunction(x, a, n)``, we just return
      ``SingularityFunction(x, a, n + 1)/(n + 1)`` if ``n >= 0`` and
      ``SingularityFunction(x, a, n + 1)`` if ``n < 0``.

    - If the node is a multiplication or power node having a
      SingularityFunction term we rewrite the whole expression in terms of
      Heaviside and DiracDelta and then integrate the output. Lastly, we
      rewrite the output of integration back in terms of SingularityFunction.

    - If none of the above case arises, we return None.

    Examples
    ========

    >>> from sympy.integrals.singularityfunctions import singularityintegrate
    >>> from sympy import SingularityFunction, symbols, Function
    >>> x, a, n, y = symbols('x a n y')
    >>> f = Function('f')
    >>> singularityintegrate(SingularityFunction(x, a, 3), x)
    SingularityFunction(x, a, 4)/4
    >>> singularityintegrate(5*SingularityFunction(x, 5, -2), x)
    5*SingularityFunction(x, 5, -1)
    >>> singularityintegrate(6*SingularityFunction(x, 5, -1), x)
    6*SingularityFunction(x, 5, 0)
    >>> singularityintegrate(x*SingularityFunction(x, 0, -1), x)
    0
    >>> singularityintegrate(SingularityFunction(x, 1, -1) * f(x), x)
    f(1)*SingularityFunction(x, 1, 0)

    N   ))hasr   
isinstanceargsis_positiveis_zerois_Mulis_Powrewriter   r   )fxanexprs        Dlib/python3.11/site-packages/sympy/integrals/singularityfunctions.pysingularityintegrater      s    V 55$%% t!()) 4&1a= 	4AI 	4&q!QU33QU;;(] 	4&q!QU333x 118 1yy$$q!!||/0004    N)sympy.functionsr   r   sympy.integralsr   r    r   r   <module>r      sH    ; ; ; ; ; ; ; ; % % % % % %: : : : :r   