
    Ed                     V    d dl mZ d dlmZ d dlmZ d dlmZmZ ddl	m
Z
mZ d Zd Zd	S )
    )Mul)S)default_sort_key)
DiracDelta	Heaviside   )Integral	integratec           	         g }d}|                                  \  }}t          |t                    }|                    |           |D ]}|j        rWt          |j        t                    r=|                    |	                    |j        |j
        dz
                       |j        }|-t          |t                    r|                    |          r|}|                    |           |sg }|D ]}t          |t                    r+|                    |                    d|                     B|j        rct          |j        t                    rI|                    |	                    |j                            d|          |j
                             |                    |           ||k    rt          |                                 }nd}d|fS |t          | fS )a  change_mul(node, x)

       Rearranges the operands of a product, bringing to front any simple
       DiracDelta expression.

       Explanation
       ===========

       If no simple DiracDelta expression was found, then all the DiracDelta
       expressions are simplified (using DiracDelta.expand(diracdelta=True, wrt=x)).

       Return: (dirac, new node)
       Where:
         o dirac is either a simple DiracDelta expression or None (if no simple
           expression was found);
         o new node is either a simplified DiracDelta expressions or None (if it
           could not be simplified).

       Examples
       ========

       >>> from sympy import DiracDelta, cos
       >>> from sympy.integrals.deltafunctions import change_mul
       >>> from sympy.abc import x, y
       >>> change_mul(x*y*DiracDelta(x)*cos(x), x)
       (DiracDelta(x), x*y*cos(x))
       >>> change_mul(x*y*DiracDelta(x**2 - 1)*cos(x), x)
       (None, x*y*cos(x)*DiracDelta(x - 1)/2 + x*y*cos(x)*DiracDelta(x + 1)/2)
       >>> change_mul(x*y*DiracDelta(cos(x))*cos(x), x)
       (None, None)

       See Also
       ========

       sympy.functions.special.delta_functions.DiracDelta
       deltaintegrate
    N)keyr   T
diracdeltawrt)args_cncsortedr   extendis_Pow
isinstancebaser   appendfuncexp	is_simpleexpandr   )	nodexnew_argsdiraccncsorted_argsargnnodes	            >lib/python3.11/site-packages/sympy/integrals/deltafunctions.py
change_mulr%      s   N HE MMOOEAr 0111Kr ! !: 	*SXz:: 	OOCHHSXsw{;;<<<(C 	!jj99 	!cmmA>N>N 	!EEOOC      	% 	%C#z** %

d
 B BCCCC %
38Z @ @ %Da)P)PRURY Z Z[[[[$$$${" 	N))++EEEe}3>""    c                 R   |                      t                    sdS | j        t          k    r|                     d|          }|| k    r|                     |          rt          | j                  dk    s| j        d         dk    rt          | j        d                   S t          | j        d         | j        d         dz
            | j        d                                         	                                z  S nt          ||          }|S | j        s| j        r|                                 }| |k    r+t          ||          }|t          |t                    s|S nBt          | |          \  }}|s|rt          ||          }|S nddlm} |                    d|          }|j        rt          ||          \  }}||z  } ||j        d         |          d         }	t          |j                  dk    rdn|j        d         }
d}|
dk    rt$          j        |
z  |                    ||
                              ||	          z  }|j        r|
dz  }
|dz  }n1|dk    r|t          ||	z
            z  S |t          ||dz
            z  S |
dk    t$          j        S dS )a  
    deltaintegrate(f, x)

    Explanation
    ===========

    The idea for integration is the following:

    - If we are dealing with a DiracDelta expression, i.e. DiracDelta(g(x)),
      we try to simplify it.

      If we could simplify it, then we integrate the resulting expression.
      We already know we can integrate a simplified expression, because only
      simple DiracDelta expressions are involved.

      If we couldn't simplify it, there are two cases:

      1) The expression is a simple expression: we return the integral,
         taking care if we are dealing with a Derivative or with a proper
         DiracDelta.

      2) The expression is not simple (i.e. DiracDelta(cos(x))): we can do
         nothing at all.

    - If the node is a multiplication node having a DiracDelta term:

      First we expand it.

      If the expansion did work, then we try to integrate the expansion.

      If not, we try to extract a simple DiracDelta term, then we have two
      cases:

      1) We have a simple DiracDelta term, so we return the integral.

      2) We didn't have a simple term, but we do have an expression with
         simplified DiracDelta terms, so we integrate this expression.

    Examples
    ========

        >>> from sympy.abc import x, y, z
        >>> from sympy.integrals.deltafunctions import deltaintegrate
        >>> from sympy import sin, cos, DiracDelta
        >>> deltaintegrate(x*sin(x)*cos(x)*DiracDelta(x - 1), x)
        sin(1)*cos(1)*Heaviside(x - 1)
        >>> deltaintegrate(y**2*DiracDelta(x - z)*DiracDelta(y - z), y)
        z**2*DiracDelta(x - z)*Heaviside(y - z)

    See Also
    ========

    sympy.functions.special.delta_functions.DiracDelta
    sympy.integrals.integrals.Integral
    NTr   r   r   )solve)hasr   r   r   r   lenargsr   as_polyLCr
   is_Mulr   r   r	   r%   sympy.solversr(   r   NegativeOnediffsubsis_zeroZero)fr   hfhg	deltaterm	rest_multr(   rest_mult_2pointnmrs                r$   deltaintegrater@   Q   s   p 55 t 	v ;HH!H,,6 	 {{1~~ 2KK1$ 2q	Q 2$QVAY///&qvay!&)a-@@q	))++..001 2	2 1aBI	
 -QX -HHJJ6 +	1aB jX&>&> 	 $.a#3#3 Iy # "9a00BI 0/////%,,!,DD	# 6-7	1-E-E*I{ )+ 5IinQ/33A6 in--q0GQQinQ6G1f 	7q(1)=)=)B)B1e)L)LLAy 7QQ6 7#$Yq5y%9%9#99#$Z!A#%6%6#66 1f 	7 v4r&   N)sympy.core.mulr   sympy.core.singletonr   sympy.core.sortingr   sympy.functionsr   r   	integralsr	   r
   r%   r@    r&   r$   <module>rG      s          " " " " " " / / / / / / 1 1 1 1 1 1 1 1 * * * * * * * *F# F# F#Rx x x x xr&   