
    Ed                     >    d Z ddlmZmZ ddlmZ ddlmZ d Zd Z	dS )z
Recurrences
    )Ssympify)iterable)as_intc                 ^   | st           j        S t          |           st          d          t          |          st          d          t	          |          }|dk     rt          d          d | D             }d |D             }t          |          }t          |          |k    rt          d          |t           j        g|t          |          z
  z  z  }||k     r||         S d t          t          ||          |          D             }t          |d	d
         |d
                   S )a	  
    Evaluation of univariate linear recurrences of homogeneous type
    having coefficients independent of the recurrence variable.

    Parameters
    ==========

    coeffs : iterable
        Coefficients of the recurrence
    init : iterable
        Initial values of the recurrence
    n : Integer
        Point of evaluation for the recurrence

    Notes
    =====

    Let `y(n)` be the recurrence of given type, ``c`` be the sequence
    of coefficients, ``b`` be the sequence of initial/base values of the
    recurrence and ``k`` (equal to ``len(c)``) be the order of recurrence.
    Then,

    .. math :: y(n) = \begin{cases} b_n & 0 \le n < k \\
        c_0 y(n-1) + c_1 y(n-2) + \cdots + c_{k-1} y(n-k) & n \ge k
        \end{cases}

    Let `x_0, x_1, \ldots, x_n` be a sequence and consider the transformation
    that maps each polynomial `f(x)` to `T(f(x))` where each power `x^i` is
    replaced by the corresponding value `x_i`. The sequence is then a solution
    of the recurrence if and only if `T(x^i p(x)) = 0` for each `i \ge 0` where
    `p(x) = x^k - c_0 x^(k-1) - \cdots - c_{k-1}` is the characteristic
    polynomial.

    Then `T(f(x)p(x)) = 0` for each polynomial `f(x)` (as it is a linear
    combination of powers `x^i`). Now, if `x^n` is congruent to
    `g(x) = a_0 x^0 + a_1 x^1 + \cdots + a_{k-1} x^{k-1}` modulo `p(x)`, then
    `T(x^n) = x_n` is equal to
    `T(g(x)) = a_0 x_0 + a_1 x_1 + \cdots + a_{k-1} x_{k-1}`.

    Computation of `x^n`,
    given `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`
    is performed using exponentiation by squaring (refer to [1_]) with
    an additional reduction step performed to retain only first `k` powers
    of `x` in the representation of `x^n`.

    Examples
    ========

    >>> from sympy.discrete.recurrences import linrec
    >>> from sympy.abc import x, y, z

    >>> linrec(coeffs=[1, 1], init=[0, 1], n=10)
    55

    >>> linrec(coeffs=[1, 1], init=[x, y], n=10)
    34*x + 55*y

    >>> linrec(coeffs=[x, y], init=[0, 1], n=5)
    x**2*y + x*(x**3 + 2*x*y) + y**2

    >>> linrec(coeffs=[1, 2, 3, 0, 0, 4], init=[x, y, z], n=16)
    13576*x + 5676*y + 2356*z

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Exponentiation_by_squaring
    .. [2] https://en.wikipedia.org/w/index.php?title=Modular_exponentiation&section=6#Matrices

    See Also
    ========

    sympy.polys.agca.extensions.ExtensionElement.__pow__

    z6Expected a sequence of coefficients for the recurrencezFExpected a sequence of values for the initialization of the recurrencer   z@Point of evaluation of recurrence must be a non-negative integerc                 ,    g | ]}t          |          S  r   .0args     :lib/python3.11/site-packages/sympy/discrete/recurrences.py
<listcomp>zlinrec.<locals>.<listcomp>g   s    (((#(((    c                 ,    g | ]}t          |          S r	   r
   r   s     r   r   zlinrec.<locals>.<listcomp>h   s    &&&#&&&r   zECount of initial values should not exceed the order of the recurrencec                     g | ]
\  }}||z  S r	   r	   )r   uvs      r   r   zlinrec.<locals>.<listcomp>s   s     999TQQqS999r   N)
r   Zeror   	TypeErrorr   
ValueErrorlenziplinrec_coeffssum)coeffsinitncbktermss          r   linrecr$   
   se   Z  vF + * + + 	+ D>> . - . . 	. 	q		A1u 0 / 0 0 	0 	)((((A&&&&&AAA
1vvz # 2 3 3 	3 	
afXq3q66z""1u t99Sq!!4!4a88999EuSbSz59%%%r   c                 X     t                      fdfd |          S )a  
    Compute the coefficients of n'th term in linear recursion
    sequence defined by c.

    `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`.

    It computes the coefficients by using binary exponentiation.
    This function is used by `linrec` and `_eval_pow_by_cayley`.

    Parameters
    ==========

    c = coefficients of the divisor polynomial
    n = exponent of x, so dividend is x^n

    c                    t           j        gdt          |           z  dz
  |z   z  }t          |           D ]3\  }}t          |           D ]\  }}|||z   |z   xx         ||z  z  cc<   4t	          t          |          dz
  dz
  d          D ]9}t	                    D ]'}|||z
  dz
  xx         ||         |         z  z  cc<   (:|d          S )N      r   )r   r   r   	enumeraterange)	r   offsetwipjqr    r"   s	          r   _square_and_reducez)linrec_coeffs.<locals>._square_and_reduce   s    VHaAhlV+,aLL 	) 	)DAq!! ) )1&1*q.!!!QqS(!!!!) s1vvz1q5"-- 	* 	*A1XX * *!a%!)!QqT	)* !ur   c                     | k     r5t           j        g| z  t           j        gz   t           j        g| z
  dz
  z  z   S   | dz            | dz            S )Nr(   r'   )r   r   One)r   _final_coeffsr1   r"   s    r   r4   z$linrec_coeffs.<locals>._final_coeffs   sd    
 q5 	DF8A:'16(AEAI*>>>%%mmAF&;&;QUCCCr   )r   )r    r   r4   r1   r"   s   ` @@@r   r   r   w   sm    $ 	AA     "D D D D D D D =r   N)
__doc__
sympy.corer   r   sympy.utilities.iterablesr   sympy.utilities.miscr   r$   r   r	   r   r   <module>r9      sy     " ! ! ! ! ! ! ! . . . . . . ' ' ' ' ' 'j& j& j&Z/ / / / /r   