
    Ed,                         d Z ddlmZ ddlmZ ddlmZ ddlmZm	Z	 ddl
mZ ddlmZ ddlmZ dd	lmZmZ d
ed
efdZd ZddZd ZddZd
efdZdS )zJ
Module to evaluate the proposition with assumptions using SAT algorithm.
    )S)Symbol)get_all_known_facts)global_assumptionsAppliedPredicate)class_fact_registry)oo)satisfiable)CNF
EncodedCNFTc                 h   t          j        |           }t          j        |            }t          j        |          }t                      }|r|                    |          }t          |||||          }|                    |           |r|                    |           t          |||          S )a  
    Function to evaluate the proposition with assumptions using SAT algorithm.

    This function extracts every fact relevant to the expressions composing
    proposition and assumptions. For example, if a predicate containing
    ``Abs(x)`` is proposed, then ``Q.zero(Abs(x)) | Q.positive(Abs(x))``
    will be found and passed to SAT solver because ``Q.nonnegative`` is
    registered as a fact for ``Abs``.

    Proposition is evaluated to ``True`` or ``False`` if the truth value can be
    determined. If not, ``None`` is returned.

    Parameters
    ==========

    proposition : Any boolean expression.
        Proposition which will be evaluated to boolean value.

    assumptions : Any boolean expression, optional.
        Local assumptions to evaluate the *proposition*.

    context : AssumptionsContext, optional.
        Default assumptions to evaluate the *proposition*. By default,
        this is ``sympy.assumptions.global_assumptions`` variable.

    use_known_facts : bool, optional.
        If ``True``, facts from ``sympy.assumptions.ask_generated``
        module are passed to SAT solver as well.

    iterations : int, optional.
        Number of times that relevant facts are recursively extracted.
        Default is infinite times until no new fact is found.

    Returns
    =======

    ``True``, ``False``, or ``None``

    Examples
    ========

    >>> from sympy import Abs, Q
    >>> from sympy.assumptions.satask import satask
    >>> from sympy.abc import x
    >>> satask(Q.zero(Abs(x)), Q.zero(x))
    True

    )use_known_facts
iterations)r   	from_propextendget_all_relevant_factsadd_from_cnfcheck_satisfiability)	propositionassumptionscontextr   r   props_propscontext_cnfsats	            8lib/python3.11/site-packages/sympy/assumptions/satask.pysataskr      s    d M+&&E]K<((F-,,K%%K 2!((11
 ['J@ @ @C[!!! &%%%vs333    c                 4   |                                 }|                                 }|                    |            |                    |           t          |          }t          |          }|r|rd S |r|sdS |s|rdS |s|st          d          d S d S )NTFzInconsistent assumptions)copyr   r
   
ValueError)prop_propfactbasesat_true	sat_falsecan_be_truecan_be_falses          r   r   r   S   s    }}HI$5!!!h''Ky))L | t < t < u 5| 5 3444	5 5 5 5r   Nc                    t          |           |                                 }t                      }|r||                                z  }|r||                                z  }|t          j        t          j        hz
  }d}|t                      k    rXt                      }|D ]+}t          |          }|z  t                      k    r||z  },|z
  }|z  |t                      k    X|fd|D             z  }t                      }	|D ]D}
t          |
t                    r|	t          |
j                  z  }	/|		                    |
           E|	S )a  
    Extract every expression in the argument of predicates from *proposition*,
    *assumptions* and *context*.

    Parameters
    ==========

    proposition : sympy.assumptions.cnf.CNF

    assumptions : sympy.assumptions.cnf.CNF, optional.

    context : sympy.assumptions.cnf.CNF, optional.
        CNF generated from assumptions context.

    Examples
    ========

    >>> from sympy import Q, Abs
    >>> from sympy.assumptions.cnf import CNF
    >>> from sympy.assumptions.satask import extract_predargs
    >>> from sympy.abc import x, y
    >>> props = CNF.from_prop(Q.zero(Abs(x*y)))
    >>> assump = CNF.from_prop(Q.zero(x) & Q.zero(y))
    >>> extract_predargs(props, assump)
    {x, y, Abs(x*y)}

    Nc                 X    h | ]&}t          |          z  t                      k    $|'S  )find_symbolsset).0lreq_keyss     r   	<setcomp>z#extract_predargs.<locals>.<setcomp>   s2    EEE1a8!;suu!DEQEEEr   )
r,   all_predicatesr-   r   truefalse
isinstancer   	argumentsadd)r   r   r   keyslkeystmp_keystmpr/   symsexprskeyr0   s              @r   extract_predargsr?   k   sq   8 K((H%%''DEEE .++--- *'')))QVQW%%EH
cee
 ee 	 	A??DxCEE) t>H cee
  	EEEEEEEEDEEE  c+,, 	S'''EEIIcNNNNLr   c                     t          | t                    r9t                      }|                                 D ]}|t	          |          z  }|S |                     t                    S )z
    Find every :obj:`~.Symbol` in *pred*.

    Parameters
    ==========

    pred : sympy.assumptions.cnf.CNF, or any Expr.

    )r5   r   r-   r2   r,   atomsr   )predsymbolsas      r   r,   r,      sc     $ %%$$&& 	' 	'A|A&GG::fr   c                 R   |st                      }t                      }| D ]}t          |          D ]n}t          j        |          }|                    |          }|                                D ].}t          |t                    r|t          |j                  z  }/o|| z
  |fS )a1	  
    Extract relevant facts from the items in *exprs*. Facts are defined in
    ``assumptions.sathandlers`` module.

    This function is recursively called by ``get_all_relevant_facts()``.

    Parameters
    ==========

    exprs : set
        Expressions whose relevant facts are searched.

    relevant_facts : sympy.assumptions.cnf.CNF, optional.
        Pre-discovered relevant facts.

    Returns
    =======

    exprs : set
        Candidates for next relevant fact searching.

    relevant_facts : sympy.assumptions.cnf.CNF
        Updated relevant facts.

    Examples
    ========

    Here, we will see how facts relevant to ``Abs(x*y)`` are recursively
    extracted. On the first run, set containing the expression is passed
    without pre-discovered relevant facts. The result is a set containig
    candidates for next run, and ``CNF()`` instance containing facts
    which are relevant to ``Abs`` and its argument.

    >>> from sympy import Abs
    >>> from sympy.assumptions.satask import get_relevant_clsfacts
    >>> from sympy.abc import x, y
    >>> exprs = {Abs(x*y)}
    >>> exprs, facts = get_relevant_clsfacts(exprs)
    >>> exprs
    {x*y}
    >>> facts.clauses #doctest: +SKIP
    {frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}),
    frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}),
    frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}),
    frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}),
    frozenset({Literal(Q.even(Abs(x*y)), False),
                Literal(Q.odd(Abs(x*y)), False),
                Literal(Q.odd(x*y), True)}),
    frozenset({Literal(Q.even(Abs(x*y)), False),
                Literal(Q.even(x*y), True),
                Literal(Q.odd(Abs(x*y)), False)}),
    frozenset({Literal(Q.positive(Abs(x*y)), False),
                Literal(Q.zero(Abs(x*y)), False)})}

    We pass the first run's results to the second run, and get the expressions
    for next run and updated facts.

    >>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts)
    >>> exprs
    {x, y}

    On final run, no more candidate is returned thus we know that all
    relevant facts are successfully retrieved.

    >>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts)
    >>> exprs
    set()

    )	r   r-   r   to_CNF_andr2   r5   r   r6   )r=   relevant_factsnewexprsexprfactnewfactr>   s          r   get_relevant_clsfactsrM      s    L  uuH 3 3'-- 	3 	3Dj&&G+0099N--// 3 3c#344 3CM 2 22H3	3 e^++r   c                 ,   d}t                      }t                      }	 |dk    rt          | ||          }||z  }t          ||          \  }}|dz  }||k    rn|sn?|rt                      }	|	                    t                                 t                      }
|
                    |	           d fd}g }g }t          |
j	                  }t          |          D ]2\  }|fd|
j	        D             z  }| ||
j        ||z            z  }3t          t          t          |t          dt          |          dz                                           }t          ||          }nt                      }|                    |           |S )al  
    Extract all relevant facts from *proposition* and *assumptions*.

    This function extracts the facts by recursively calling
    ``get_relevant_clsfacts()``. Extracted facts are converted to
    ``EncodedCNF`` and returned.

    Parameters
    ==========

    proposition : sympy.assumptions.cnf.CNF
        CNF generated from proposition expression.

    assumptions : sympy.assumptions.cnf.CNF
        CNF generated from assumption expression.

    context : sympy.assumptions.cnf.CNF
        CNF generated from assumptions context.

    use_known_facts : bool, optional.
        If ``True``, facts from ``sympy.assumptions.ask_generated``
        module are encoded as well.

    iterations : int, optional.
        Number of times that relevant facts are recursively extracted.
        Default is infinite times until no new fact is found.

    Returns
    =======

    sympy.assumptions.cnf.EncodedCNF

    Examples
    ========

    >>> from sympy import Q
    >>> from sympy.assumptions.cnf import CNF
    >>> from sympy.assumptions.satask import get_all_relevant_facts
    >>> from sympy.abc import x, y
    >>> props = CNF.from_prop(Q.nonzero(x*y))
    >>> assump = CNF.from_prop(Q.nonzero(x))
    >>> context = CNF.from_prop(Q.nonzero(y))
    >>> get_all_relevant_facts(props, assump, context) #doctest: +SKIP
    <sympy.assumptions.cnf.EncodedCNF at 0x7f09faa6ccd0>

    r   T   c                 "    | dk    r| |z   S | |z
  S )Nr   r+   )litdeltas     r   translate_literalz1get_all_relevant_facts.<locals>.translate_literalS  s"    Qw #U{"U{"r   c                 $    fd| D             S )Nc                 .    g | ]}fd |D             S )c                 (    h | ]} |          S r+   r+   )r.   irR   rS   s     r   r1   zLget_all_relevant_facts.<locals>.translate_data.<locals>.<listcomp>.<setcomp>Z  s'    AAAQ&&q%00AAAr   r+   )r.   clauserR   rS   s     r   
<listcomp>zBget_all_relevant_facts.<locals>.translate_data.<locals>.<listcomp>Z  s1    UUUfAAAAA&AAAUUUr   r+   )datarR   rS   s    `r   translate_dataz.get_all_relevant_facts.<locals>.translate_dataY  s"    UUUUUPTUUUUr   c                 &    g | ]} |          S r+   r+   )r.   rB   rJ   s     r   rY   z*get_all_relevant_facts.<locals>.<listcomp>_  s!    BBBtT

BBBr   )r   r-   r?   rM   add_clausesr   r   from_cnflenrC   	enumeraterZ   dictlistzipranger   )r   r   r   r   r   rW   rH   	all_exprsr=   known_facts_CNF
kf_encodedr[   rZ   rC   n_litencodingctxrJ   rS   s                    @@r   r   r     s   h 	
AUUNI	6 	H$[+wGGEU	 5e^ L L~	Q
? 	 		  %%##$7$9$9:::\\
O,,,	# 	# 	#	V 	V 	V 	V 	VJ&'' ++ 	? 	?GAtBBBBz/ABBBBGNN:?AI>>>DDS%3w<<>*B*BCCDDEEx((ll^$$$Jr   )NN)N)__doc__sympy.core.singletonr   sympy.core.symbolr   sympy.assumptions.ask_generatedr   sympy.assumptions.assumer   r   sympy.assumptions.sathandlersr   
sympy.corer	   sympy.logic.inferencer
   sympy.assumptions.cnfr   r   r   r   r?   r,   rM   r   r+   r   r   <module>rt      sJ    # " " " " " $ $ $ $ $ $ ? ? ? ? ? ? I I I I I I I I = = = = = =       - - - - - - 1 1 1 1 1 1 1 1 %)2DA4 A4 A4 A4H5 5 507 7 7 7r  $R, R, R, R,l ^ ^ ^ ^ ^ ^r   