
    Kd2                        d dl ZddlmZmZ ddlmZ ddlmZ ddl	m
Z
mZmZmZ  G d d	          Z G d
 d          Z G d dee          Z edg d          e_         G d de          Zd Z G d de          ZdS )    N   )BaseEstimatorClassifierMixin)RequestMethod   )available_if)_check_sample_weight_num_samplescheck_arraycheck_is_fittedc                       e Zd ZdZd Zd ZdS )ArraySlicingWrapper-
    Parameters
    ----------
    array
    c                     || _         d S Narrayselfr   s     6lib/python3.11/site-packages/sklearn/utils/_mocking.py__init__zArraySlicingWrapper.__init__   s    


    c                 6    t          | j        |                   S r   MockDataFramer   )r   aslices     r   __getitem__zArraySlicingWrapper.__getitem__   s    TZ/000r   N)__name__
__module____qualname____doc__r   r    r   r   r   r   	   s<           1 1 1 1 1r   r   c                   :    e Zd ZdZd Zd Zd
dZd Zd Zdd	Z	dS )r   r   c                 z    || _         || _        |j        | _        |j        | _        t	          |          | _        d S r   )r   valuesshapendimr   ilocr   s     r   r   zMockDataFrame.__init__    s5    
[
J	'..			r   c                 *    t          | j                  S r   )lenr   r   s    r   __len__zMockDataFrame.__len__(   s    4:r   Nc                     | j         S r   r   )r   dtypes     r   	__array__zMockDataFrame.__array__+   s     zr   c                 <    t          | j        |j        k              S r   r   r   others     r   __eq__zMockDataFrame.__eq__1   s    TZ5;6777r   c                     | |k     S r   r"   r1   s     r   __ne__zMockDataFrame.__ne__4   s    5=  r   r   c                 T    t          | j                            ||                    S )N)axis)r   r   take)r   indicesr7   s      r   r8   zMockDataFrame.take7   s"    TZ__W4_@@AAAr   r   )r   )
r   r   r    r!   r   r,   r/   r3   r5   r8   r"   r   r   r   r      s         / / /     8 8 8! ! !B B B B B Br   r   c            	       \    e Zd ZdZddddddddddZddZdd	Zd
 Zd Zd Z	ddZ
d ZdS )CheckingClassifiera  Dummy classifier to test pipelining and meta-estimators.

    Checks some property of `X` and `y`in fit / predict.
    This allows testing whether pipelines / cross-validation or metaestimators
    changed the input.

    Can also be used to check if `fit_params` are passed correctly, and
    to force a certain score to be returned.

    Parameters
    ----------
    check_y, check_X : callable, default=None
        The callable used to validate `X` and `y`. These callable should return
        a bool where `False` will trigger an `AssertionError`.

    check_y_params, check_X_params : dict, default=None
        The optional parameters to pass to `check_X` and `check_y`.

    methods_to_check : "all" or list of str, default="all"
        The methods in which the checks should be applied. By default,
        all checks will be done on all methods (`fit`, `predict`,
        `predict_proba`, `decision_function` and `score`).

    foo_param : int, default=0
        A `foo` param. When `foo > 1`, the output of :meth:`score` will be 1
        otherwise it is 0.

    expected_sample_weight : bool, default=False
        Whether to check if a valid `sample_weight` was passed to `fit`.

    expected_fit_params : list of str, default=None
        A list of the expected parameters given when calling `fit`.

    Attributes
    ----------
    classes_ : int
        The classes seen during `fit`.

    n_features_in_ : int
        The number of features seen during `fit`.

    Examples
    --------
    >>> from sklearn.utils._mocking import CheckingClassifier

    This helper allow to assert to specificities regarding `X` or `y`. In this
    case we expect `check_X` or `check_y` to return a boolean.

    >>> from sklearn.datasets import load_iris
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = CheckingClassifier(check_X=lambda x: x.shape == (150, 4))
    >>> clf.fit(X, y)
    CheckingClassifier(...)

    We can also provide a check which might raise an error. In this case, we
    expect `check_X` to return `X` and `check_y` to return `y`.

    >>> from sklearn.utils import check_array
    >>> clf = CheckingClassifier(check_X=check_array)
    >>> clf.fit(X, y)
    CheckingClassifier(...)
    Nallr   check_ycheck_y_paramscheck_Xcheck_X_paramsmethods_to_check	foo_paramexpected_sample_weightexpected_fit_paramsc                v    || _         || _        || _        || _        || _        || _        || _        || _        d S r   r=   )	r   r>   r?   r@   rA   rB   rC   rD   rE   s	            r   r   zCheckingClassifier.__init__{   sG     ,, 0"&<##6   r   Tc                 d   |rt          |            | j        F| j        i n| j        } | j        |fi |}t          |t          t
          j        f          r|sJ n|}|M| j        F| j        i n| j        } | j        |fi |}t          |t          t
          j        f          r|sJ n|}||fS )a  Validate X and y and make extra check.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data set.
        y : array-like of shape (n_samples), default=None
            The corresponding target, by default None.
        should_be_fitted : bool, default=True
            Whether or not the classifier should be already fitted.
            By default True.

        Returns
        -------
        X, y
        )	r   r@   rA   
isinstanceboolnpbool_r>   r?   )r   Xyshould_be_fittedparams	checked_X	checked_ys          r   
_check_X_yzCheckingClassifier._check_X_y   s    "  	"D!!!<#.6RRD<OF$Q11&11I)dBH%566      =T\5.6RRD<OF$Q11&11I)dBH%566      !tr   c                    t          |          t          |          k    sJ | j        dk    s	d| j        v r|                     ||d          \  }}t          j        |          d         | _        t          j        t          |dd                    | _        | j	        rt          | j	                  t          |          z
  }|r t          dt          |           d	          |                                D ]X\  }}t          |          t          |          k    r3t          d
| dt          |           dt          |           d          Y| j        r!|t          d          t          ||           | S )a   Fit classifier.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples, n_outputs) or (n_samples,),                 default=None
            Target relative to X for classification or regression;
            None for unsupervised learning.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of the estimator

        Returns
        -------
        self
        r<   fitF)rN   r   T)	ensure_2dallow_ndzExpected fit parameter(s) z
 not seen.zFit parameter z has length z; expected .Nz#Expected sample_weight to be passed)r
   rB   rR   rJ   r&   n_features_in_uniquer   classes_rE   setAssertionErrorlistitemsrD   r	   )r   rL   rM   sample_weight
fit_paramsmissingkeyvalues           r   rT   zCheckingClassifier.fit   s   0 A,q//1111 E))Ud6K-K-K??1a%?@@DAq hqkk!n	+a54"P"P"PQQ# 	$233c*ooEG $JgJJJ   )..00  
U&&,q//99(9 9 9,u:M:M 9 9&21oo9 9 9   :
 & 	3$$%JKKK 222r   c                     | j         dk    s	d| j         v r|                     |          \  }}| j        t          j        t          |          t                             S )a>  Predict the first class seen in `classes_`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        preds : ndarray of shape (n_samples,)
            Predictions of the first class seens in `classes_`.
        r<   predict)r.   )rB   rR   rZ   rJ   zerosr
   intr   rL   rM   s      r   re   zCheckingClassifier.predict   sV      E))Y$:O-O-O??1%%DAq}RXl1ooSAAABBr   c                     | j         dk    s	d| j         v r|                     |          \  }}t          j        t	          |          t          | j                  f          }d|dddf<   |S )a  Predict probabilities for each class.

        Here, the dummy classifier will provide a probability of 1 for the
        first class of `classes_` and 0 otherwise.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        proba : ndarray of shape (n_samples, n_classes)
            The probabilities for each sample and class.
        r<   predict_probar   Nr   )rB   rR   rJ   rf   r
   r*   rZ   )r   rL   rM   probas       r   rj   z CheckingClassifier.predict_proba   sn       E))_@U-U-U??1%%DAq,q//3t}+=+=>??aaadr   c                 L   | j         dk    s	d| j         v r|                     |          \  }}t          | j                  dk    r!t	          j        t          |                    S t	          j        t          |          t          | j                  f          }d|dddf<   |S )aB  Confidence score.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        decision : ndarray of shape (n_samples,) if n_classes == 2                else (n_samples, n_classes)
            Confidence score.
        r<   decision_functionr   r   Nr   )rB   rR   r*   rZ   rJ   rf   r
   )r   rL   rM   decisions       r   rm   z$CheckingClassifier.decision_function
  s     !U**"d&;;;??1%%DAqt}"" 8LOO,,,xa#dm2D2D EFFHHQQQTNOr   c                 z    | j         dk    s	d| j         v r|                     ||           | j        dk    rd}nd}|S )aQ  Fake score.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Y : array-like of shape (n_samples, n_output) or (n_samples,)
            Target relative to X for classification or regression;
            None for unsupervised learning.

        Returns
        -------
        score : float
            Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>
            score=1` otherwise `score=0`).
        r<   scorer   g      ?g        )rB   rR   rC   )r   rL   Yrp   s       r   rp   zCheckingClassifier.score&  sQ    &  E))W8M-M-MOOAq!!!>AEEEr   c                     ddgdS )NT1dlabel)
_skip_testX_typesr"   r+   s    r   
_more_tagszCheckingClassifier._more_tagsA  s    "	{;;;r   )NTr   )NN)r   r   r    r!   r   rR   rT   re   rj   rm   rp   rv   r"   r   r   r;   r;   ;   s        = =D # 7 7 7 7 7*! ! ! !F. . . .`C C C"  ,  8   6< < < < <r   r;   rT   F)namekeysvalidate_keysc                   2    e Zd ZdZddZd Zd Zd Zd ZdS )	NoSampleWeightWrapperzWrap estimator which will not expose `sample_weight`.

    Parameters
    ----------
    est : estimator, default=None
        The estimator to wrap.
    Nc                     || _         d S r   )est)r   r}   s     r   r   zNoSampleWeightWrapper.__init__V  s    r   c                 8    | j                             ||          S r   )r}   rT   rh   s      r   rT   zNoSampleWeightWrapper.fitY  s    x||Aq!!!r   c                 6    | j                             |          S r   )r}   re   r   rL   s     r   re   zNoSampleWeightWrapper.predict\  s    x"""r   c                 6    | j                             |          S r   )r}   rj   r   s     r   rj   z#NoSampleWeightWrapper.predict_proba_  s    x%%a(((r   c                 
    ddiS )Nrt   Tr"   r+   s    r   rv   z NoSampleWeightWrapper._more_tagsb  s    d##r   r   )	r   r   r    r!   r   rT   re   rj   rv   r"   r   r   r{   r{   M  sn            " " "# # #) ) )$ $ $ $ $r   r{   c                       fd}|S )Nc                 (    | j         d uo| j         v S r   response_methods)r   methods    r   checkz_check_response.<locals>.checkg  s    $D0TVt?T5TTr   r"   )r   r   s   ` r   _check_responser   f  s(    U U U U U Lr   c                       e Zd ZdZddZd Z e ed                    d             Z e ed                    d             Z	 e ed	                    d
             Z
dS )_MockEstimatorOnOffPredictiona  Estimator for which we can turn on/off the prediction methods.

    Parameters
    ----------
    response_methods: list of             {"predict", "predict_proba", "decision_function"}, default=None
        List containing the response implemented by the estimator. When, the
        response is in the list, it will return the name of the response method
        when called. Otherwise, an `AttributeError` is raised. It allows to
        use `getattr` as any conventional estimator. By default, no response
        methods are mocked.
    Nc                     || _         d S r   r   )r   r   s     r   r   z&_MockEstimatorOnOffPrediction.__init__{  s     0r   c                 8    t          j        |          | _        | S r   )rJ   rY   rZ   rh   s      r   rT   z!_MockEstimatorOnOffPrediction.fit~  s    	!r   re   c                     dS )Nre   r"   r   s     r   re   z%_MockEstimatorOnOffPrediction.predict  s    yr   rj   c                     dS )Nrj   r"   r   s     r   rj   z+_MockEstimatorOnOffPrediction.predict_proba  s    r   rm   c                     dS )Nrm   r"   r   s     r   rm   z/_MockEstimatorOnOffPrediction.decision_function  s    ""r   r   )r   r   r    r!   r   rT   r   r   re   rj   rm   r"   r   r   r   r   m  s         1 1 1 1   \//),,--  .- \///2233  43 \//"56677# # 87# # #r   r   )numpyrJ   baser   r   utils._metadata_requestsr   metaestimatorsr   
validationr	   r
   r   r   r   r   r;   set_fit_requestr{   r   r   r"   r   r   <module>r      s       1 1 1 1 1 1 1 1 4 4 4 4 4 4 ( ( ( ( ( ( X X X X X X X X X X X X1 1 1 1 1 1 1 1!B !B !B !B !B !B !B !BHG< G< G< G< G<- G< G< G<Z &3]	Ru& & &  "
$ $ $ $ $M $ $ $2  # # # # #M # # # # #r   