
    9=e(                     >    d Z dZg dZddlmZ d ZddZdd	Zd
 ZdS )z.Functions to extract parts of sparse matrices
zrestructuredtext en)findtriltriu   )
coo_matrixc                     t          | d          } |                                  | j        dk    }| j        |         | j        |         | j        |         fS )aJ  Return the indices and values of the nonzero elements of a matrix

    Parameters
    ----------
    A : dense or sparse matrix
        Matrix whose nonzero elements are desired.

    Returns
    -------
    (I,J,V) : tuple of arrays
        I,J, and V contain the row indices, column indices, and values
        of the nonzero matrix entries.


    Examples
    --------
    >>> from scipy.sparse import csr_matrix, find
    >>> A = csr_matrix([[7.0, 8.0, 0],[0, 0, 9.0]])
    >>> find(A)
    (array([0, 0, 1], dtype=int32), array([0, 1, 2], dtype=int32), array([ 7.,  8.,  9.]))

    Tcopy    )r   sum_duplicatesdatarowcol)Anz_masks     5lib/python3.11/site-packages/scipy/sparse/_extract.pyr   r      sR    0 	14   AfkG5>15>16'?::    r
   Nc                     t          | d          } | j        |z   | j        k    }t          | |                              |          S )a  Return the lower triangular portion of a matrix in sparse format

    Returns the elements on or below the k-th diagonal of the matrix A.
        - k = 0 corresponds to the main diagonal
        - k > 0 is above the main diagonal
        - k < 0 is below the main diagonal

    Parameters
    ----------
    A : dense or sparse matrix
        Matrix whose lower trianglar portion is desired.
    k : integer : optional
        The top-most diagonal of the lower triangle.
    format : string
        Sparse format of the result, e.g. format="csr", etc.

    Returns
    -------
    L : sparse matrix
        Lower triangular portion of A in sparse format.

    See Also
    --------
    triu : upper triangle in sparse format

    Examples
    --------
    >>> from scipy.sparse import csr_matrix, tril
    >>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
    ...                dtype='int32')
    >>> A.toarray()
    array([[1, 2, 0, 0, 3],
           [4, 5, 0, 6, 7],
           [0, 0, 8, 9, 0]])
    >>> tril(A).toarray()
    array([[1, 0, 0, 0, 0],
           [4, 5, 0, 0, 0],
           [0, 0, 8, 0, 0]])
    >>> tril(A).nnz
    4
    >>> tril(A, k=1).toarray()
    array([[1, 2, 0, 0, 0],
           [4, 5, 0, 0, 0],
           [0, 0, 8, 9, 0]])
    >>> tril(A, k=-1).toarray()
    array([[0, 0, 0, 0, 0],
           [4, 0, 0, 0, 0],
           [0, 0, 0, 0, 0]])
    >>> tril(A, format='csc')
    <3x5 sparse matrix of type '<class 'numpy.int32'>'
            with 4 stored elements in Compressed Sparse Column format>

    Fr   r   r   r   _masked_cooasformatr   kformatmasks       r   r   r   +   G    p 	15!!!A519Dq$((000r   c                     t          | d          } | j        |z   | j        k    }t          | |                              |          S )a  Return the upper triangular portion of a matrix in sparse format

    Returns the elements on or above the k-th diagonal of the matrix A.
        - k = 0 corresponds to the main diagonal
        - k > 0 is above the main diagonal
        - k < 0 is below the main diagonal

    Parameters
    ----------
    A : dense or sparse matrix
        Matrix whose upper trianglar portion is desired.
    k : integer : optional
        The bottom-most diagonal of the upper triangle.
    format : string
        Sparse format of the result, e.g. format="csr", etc.

    Returns
    -------
    L : sparse matrix
        Upper triangular portion of A in sparse format.

    See Also
    --------
    tril : lower triangle in sparse format

    Examples
    --------
    >>> from scipy.sparse import csr_matrix, triu
    >>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
    ...                dtype='int32')
    >>> A.toarray()
    array([[1, 2, 0, 0, 3],
           [4, 5, 0, 6, 7],
           [0, 0, 8, 9, 0]])
    >>> triu(A).toarray()
    array([[1, 2, 0, 0, 3],
           [0, 5, 0, 6, 7],
           [0, 0, 8, 9, 0]])
    >>> triu(A).nnz
    8
    >>> triu(A, k=1).toarray()
    array([[0, 2, 0, 0, 3],
           [0, 0, 0, 6, 7],
           [0, 0, 0, 9, 0]])
    >>> triu(A, k=-1).toarray()
    array([[1, 2, 0, 0, 3],
           [4, 5, 0, 6, 7],
           [0, 0, 8, 9, 0]])
    >>> triu(A, format='csc')
    <3x5 sparse matrix of type '<class 'numpy.int32'>'
            with 8 stored elements in Compressed Sparse Column format>

    Fr   r   r   s       r   r   r   h   r   r   c                     | j         |         }| j        |         }| j        |         }t          |||ff| j        | j                  S )N)shapedtype)r   r   r   r   r   r   )r   r   r   r   r   s        r   r   r      sE    
%+C
%+C6$<Dtc3Z(qwGGGGr   )r
   N)	__doc____docformat____all___coor   r   r   r   r    r   r   <module>r%      s     &
"
"
"      ; ; ;>:1 :1 :1 :1z:1 :1 :1 :1zH H H H Hr   