
    z-e]                    $   d Z ddlmZ ddlZddlZddlZddlmZmZm	Z	 ddl
Z
ddl
mZ ddlmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlZddlmZmZ ddlmZ ddl m!Z! ddl"m#Z#m$Z$m%Z%m&Z&m'Z' erddl(m)Z)m*Z*m+Z+m,Z,m-Z- dAdZ.	 	 	 dBdCd#Z/ G d$ d          Z0 G d% d&e0          Z1 G d' d(e0          Z2 eed         )          	 	 	 	 	 	 	 dDdEd7            Z3 eed         )          d*ddej4        ej4        ddfdFd@            Z5dS )Gz parquet compat     )annotationsN)TYPE_CHECKINGAnyLiteral)catch_warnings)using_pyarrow_string_dtype)lib)import_optional_dependencyAbstractMethodError)doc)find_stack_level)check_dtype_backend)	DataFrame
get_option)_shared_docs)arrow_string_types_mapper)	IOHandles
get_handleis_fsspec_urlis_urlstringify_path)DtypeBackendFilePath
ReadBufferStorageOptionsWriteBufferenginestrreturnBaseImplc                d   | dk    rt          d          } | dk    r_t          t          g}d}|D ]:}	  |            c S # t          $ r}|dt	          |          z   z  }Y d}~3d}~ww xY wt          d|           | dk    rt                      S | dk    rt                      S t          d	          )
zreturn our implementationautozio.parquet.engine z
 - NzUnable to find a usable engine; tried using: 'pyarrow', 'fastparquet'.
A suitable version of pyarrow or fastparquet is required for parquet support.
Trying to import the above resulted in these errors:pyarrowfastparquetz.engine must be one of 'pyarrow', 'fastparquet')r   PyArrowImplFastParquetImplImportErrorr   
ValueError)r   engine_classes
error_msgsengine_classerrs        1lib/python3.11/site-packages/pandas/io/parquet.py
get_enginer0   2   s    /00%7
* 	1 	1L1#|~~%%% 1 1 1gC00





1   
 
 	
 }}	=	 	    
E
F
FFs   	=
A&A!!A&rbFpath1FilePath | ReadBuffer[bytes] | WriteBuffer[bytes]fsr   storage_optionsStorageOptions | Nonemodeis_dirboolVtuple[FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], IOHandles[bytes] | None, Any]c                `   t          |           }|t          dd          }t          dd          }|'t          ||j                  r|rt	          d          nA|t          ||j        j                  rn$t          dt          |          j	                   t          |          r||Tt          d          }t          d          }	 |j                            |           \  }}n# t          |j        f$ r Y nw xY w|'t          d          } |j        j        |fi |pi \  }}n&|r$t!          |          r|d	k    rt          d
          d}	|sR|sPt          |t"                    r;t$          j                            |          st+          ||d|          }	d}|	j        }||	|fS )zFile handling for PyArrow.Nz
pyarrow.fsignore)errorsfsspecz8storage_options not supported with a pyarrow FileSystem.z9filesystem must be a pyarrow or fsspec FileSystem, not a r%   r1   z8storage_options passed with buffer, or non-supported URLFis_textr5   )r   r
   
isinstance
FileSystemNotImplementedErrorspecAbstractFileSystemr*   type__name__r   from_uri	TypeErrorArrowInvalidcore	url_to_fsr   r   osr2   isdirr   handle)
r2   r4   r5   r7   r8   path_or_handlepa_fsr>   pahandless
             r/   _get_path_or_handlerT   T   s2    $D))N	~*<III+HXFFFB0@!A!A )N   Jr6;3Q$R$R-b*- -   ^$$ U"+I66B.|<<E%*%5%>%>t%D%D"NNr/   :/99F!6!6" "#2#8b" "B 
 U&"8"8 UDDLL STTTG(( ~s++( n--	( D%
 
 
  7B&&s   C. .DDc                  8    e Zd Zed	d            Zd
dZdddZdS )r!   dfr   r    Nonec                N    t          | t                    st          d          d S )Nz+to_parquet only supports IO with DataFrames)rA   r   r*   )rV   s    r/   validate_dataframezBaseImpl.validate_dataframe   s0    "i(( 	LJKKK	L 	L    c                     t          |           Nr   )selfrV   r2   compressionkwargss        r/   writezBaseImpl.write       !$'''rZ   Nc                     t          |           r\   r   )r]   r2   columnsr_   s       r/   readzBaseImpl.read   ra   rZ   )rV   r   r    rW   )rV   r   r\   )r    r   )rG   
__module____qualname__staticmethodrY   r`   rd    rZ   r/   r!   r!      sc        L L L \L( ( ( (( ( ( ( ( ( (rZ   c                  J    e Zd ZddZ	 	 	 	 	 dddZdddej        ddfddZdS )r'   r    rW   c                F    t          dd           dd l}dd l}|| _        d S )Nr%   z(pyarrow is required for parquet support.extrar   )r
   pyarrow.parquet(pandas.core.arrays.arrow.extension_typesapi)r]   r%   pandass      r/   __init__zPyArrowImpl.__init__   sF    "G	
 	
 	
 	
 	 	8777rZ   snappyNrV   r   r2   FilePath | WriteBuffer[bytes]r^   
str | Noneindexbool | Noner5   r6   partition_colslist[str] | Nonec                <   |                      |           d|                    dd           i}	|||	d<    | j        j        j        |fi |	}
|j        rBdt          j        |j                  i}|
j        j	        }i ||}|

                    |          }
t          |||d|d u          \  }}}t          |t          j                  rat          |d          rQt          |j        t"          t$          f          r0|j        }t          |t$                    r|                                }	 | | j        j        j        |
|f|||d| n | j        j        j        |
|f||d| ||                                 d S d S # ||                                 w w xY w)	Nschemapreserve_indexPANDAS_ATTRSwb)r5   r7   r8   name)r^   rw   
filesystem)r^   r   )rY   popro   Tablefrom_pandasattrsjsondumpsrz   metadatareplace_schema_metadatarT   rA   ioBufferedWriterhasattrr~   r   bytesdecodeparquetwrite_to_datasetwrite_tableclose)r]   rV   r2   r^   ru   r5   rw   r   r_   from_pandas_kwargstabledf_metadataexisting_metadatamerged_metadatarP   rS   s                   r/   r`   zPyArrowImpl.write   s     	###.6

8T8R8R-S38/0**2DD1CDD8 	C)4:bh+?+?@K % 5B!2BkBO11/BBE.A+!-/
 /
 /
+ ~r'899	9//	9 >.e==	9
 ,0N.%00 9!/!6!6!8!8	 )1 1" !,#1)      - ," !,)	 
    " #"w" #s   ,<F FFuse_nullable_dtypesr9   dtype_backendDtypeBackend | lib.NoDefaultc                   d|d<   i }	|dk    rddl m}
  |
            }|j        |	d<   n5|dk    rt          j        |	d<   nt                      rt                      |	d<   t          d          }|d	k    rd|	d
<   t          |||d          \  }}}	  | j	        j
        j        |f|||d|} |j        di |	}|d	k    r|                    d	d          }|j        j        r9d|j        j        v r+|j        j        d         }t!          j        |          |_        |||                                 S S # ||                                 w w xY w)NTuse_pandas_metadatanumpy_nullabler   )_arrow_dtype_mappingtypes_mapperr%   zmode.data_managerarraysplit_blocksr1   )r5   r7   )rc   r   filtersF)copys   PANDAS_ATTRSrh   )pandas.io._utilr   getpd
ArrowDtyper   r   r   rT   ro   r   
read_table	to_pandas_as_managerrz   r   r   loadsr   r   )r]   r2   rc   r   r   r   r5   r   r_   to_pandas_kwargsr   mappingmanagerrP   rS   pa_tableresultr   s                     r/   rd   zPyArrowImpl.read   s    )-$%,,,<<<<<<**,,G/6{^,,i''/1}^,,')) 	K/H/J/J^,011g/3^,.A+	/
 /
 /
+	 2tx'2%	 
  H (X';;*:;;F'!!++G%+@@' ;"ho&>>>"*/":?"KK#':k#:#:FL" #w" #s   BD4 4Er    rW   rr   NNNN)rV   r   r2   rs   r^   rt   ru   rv   r5   r6   rw   rx   r    rW   )r   r9   r   r   r5   r6   r    r   )rG   re   rf   rq   r`   r	   
no_defaultrd   rh   rZ   r/   r'   r'      s        	 	 	 	 #+!15+/?  ?  ?  ?  ? H $)69n156  6  6  6  6  6  6 rZ   r'   c                  <    e Zd ZddZ	 	 	 	 	 dddZ	 	 	 	 dddZdS )r(   r    rW   c                6    t          dd          }|| _        d S )Nr&   z,fastparquet is required for parquet support.rk   )r
   ro   )r]   r&   s     r/   rq   zFastParquetImpl.__init__'  s+     1!O
 
 
 rZ   rr   NrV   r   r^   *Literal['snappy', 'gzip', 'brotli'] | Noner5   r6   c                  	 |                      |           d|v r|t          d          d|v r|                    d          }|d|d<   |t          d          t	          |          }t          |          rt          d          		fd|d<   nrt          d	          t          d
          5   | j        j	        ||f|||d| d d d            d S # 1 swxY w Y   d S )Npartition_onzYCannot use both partition_on and partition_cols. Use partition_cols for partitioning datahivefile_scheme9filesystem is not implemented for the fastparquet engine.r>   c                J     j         | dfi pi                                  S )Nr}   )open)r2   _r>   r5   s     r/   <lambda>z'FastParquetImpl.write.<locals>.<lambda>R  s8    +&+d3 3.4"3 3dff rZ   	open_withz?storage_options passed with file object or non-fsspec file pathT)record)r^   write_indexr   )
rY   r*   r   rC   r   r   r
   r   ro   r`   )
r]   rV   r2   r^   ru   rw   r5   r   r_   r>   s
         `  @r/   r`   zFastParquetImpl.write/  s    	###V##(BK   V###ZZ77N%$*F=!!%K  
 d## 
	/99F# # # # #F;  	Q   4((( 	 	DHN (!+    	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	s   6CC #C c                   i }|                     dd          }|                     dt          j                  }	d|d<   |rt          d          |	t          j        urt          d          |t	          d          t          |          }d }
t          |          r)t          d          } |j        |d	fi |pi j	        |d
<   nNt          |t                    r9t          j                            |          st          |d	d|          }
|
j        }	  | j        j        |fi |} |j        d||d||
|
                                 S S # |
|
                                 w w xY w)Nr   Fr   pandas_nullszNThe 'use_nullable_dtypes' argument is not supported for the fastparquet enginezHThe 'dtype_backend' argument is not supported for the fastparquet enginer   r>   r1   r4   r?   )rc   r   rh   )r   r	   r   r*   rC   r   r   r
   r   r4   rA   r   rM   r2   rN   r   rO   ro   ParquetFiler   r   )r]   r2   rc   r   r5   r   r_   parquet_kwargsr   r   rS   r>   parquet_files                r/   rd   zFastParquetImpl.readd  s    *,$jj)>FF

?CNCC).~& 	%   ..%   !%K   d## 	"/99F#.6;tT#U#Uo>SQS#U#U#XN4  c"" 	"27==+>+> 	" !dE?  G >D	 /48/GGGGL)<)U'7UUfUU" #w" #s   "E E(r   r   )rV   r   r^   r   r5   r6   r    rW   )NNNN)r5   r6   r    r   )rG   re   rf   rq   r`   rd   rh   rZ   r/   r(   r(   &  s|            CK153 3 3 3 3p 150  0  0  0  0  0  0 rZ   r(   )r5   r#   rr   rV   r   $FilePath | WriteBuffer[bytes] | Noner^   rt   ru   rv   rw   rx   r   bytes | Nonec           	        t          |t                    r|g}t          |          }	|t          j                    n|}
 |	j        | |
f|||||d| |0t          |
t          j                  sJ |
                                S dS )a	  
    Write a DataFrame to the parquet format.

    Parameters
    ----------
    df : DataFrame
    path : str, path object, file-like object, or None, default None
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``write()`` function. If None, the result is
        returned as bytes. If a string, it will be used as Root Directory path
        when writing a partitioned dataset. The engine fastparquet does not
        accept file-like objects.

        .. versionchanged:: 1.2.0

    engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
        Parquet library to use. If 'auto', then the option
        ``io.parquet.engine`` is used. The default ``io.parquet.engine``
        behavior is to try 'pyarrow', falling back to 'fastparquet' if
        'pyarrow' is unavailable.

        When using the ``'pyarrow'`` engine and no storage options are provided
        and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
        (e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
        Use the filesystem keyword with an instantiated fsspec filesystem
        if you wish to use its implementation.
    compression : {{'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}},
        default 'snappy'. Name of the compression to use. Use ``None``
        for no compression.
    index : bool, default None
        If ``True``, include the dataframe's index(es) in the file output. If
        ``False``, they will not be written to the file.
        If ``None``, similar to ``True`` the dataframe's index(es)
        will be saved. However, instead of being saved as values,
        the RangeIndex will be stored as a range in the metadata so it
        doesn't require much space and is faster. Other indexes will
        be included as columns in the file output.
    partition_cols : str or list, optional, default None
        Column names by which to partition the dataset.
        Columns are partitioned in the order they are given.
        Must be None if path is not a string.
    {storage_options}

        .. versionadded:: 1.2.0

    filesystem : fsspec or pyarrow filesystem, default None
        Filesystem object to use when reading the parquet file. Only implemented
        for ``engine="pyarrow"``.

        .. versionadded:: 2.1.0

    kwargs
        Additional keyword arguments passed to the engine

    Returns
    -------
    bytes if no path argument is provided else None
    N)r^   ru   rw   r5   r   )rA   r   r0   r   BytesIOr`   getvalue)rV   r2   r   r^   ru   r5   rw   r   r_   implpath_or_bufs              r/   
to_parquetr     s    L .#&& *()fDAESWKDJ
	  %'	 	 	 	 	 |+rz22222##%%%trZ   FilePath | ReadBuffer[bytes]rc   r   bool | lib.NoDefaultr   r   r   &list[tuple] | list[list[tuple]] | Nonec           
         t          |          }	|t          j        ur4d}
|du r|
dz  }
t          j        |
t
          t                                 nd}t          |            |	j        | f||||||d|S )a  
    Load a parquet object from the file path, returning a DataFrame.

    Parameters
    ----------
    path : str, path object or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``read()`` function.
        The string could be a URL. Valid URL schemes include http, ftp, s3,
        gs, and file. For file URLs, a host is expected. A local file could be:
        ``file://localhost/path/to/table.parquet``.
        A file URL can also be a path to a directory that contains multiple
        partitioned parquet files. Both pyarrow and fastparquet support
        paths to directories as well as file URLs. A directory path could be:
        ``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``.
    engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
        Parquet library to use. If 'auto', then the option
        ``io.parquet.engine`` is used. The default ``io.parquet.engine``
        behavior is to try 'pyarrow', falling back to 'fastparquet' if
        'pyarrow' is unavailable.

        When using the ``'pyarrow'`` engine and no storage options are provided
        and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
        (e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
        Use the filesystem keyword with an instantiated fsspec filesystem
        if you wish to use its implementation.
    columns : list, default=None
        If not None, only these columns will be read from the file.
    {storage_options}

        .. versionadded:: 1.3.0

    use_nullable_dtypes : bool, default False
        If True, use dtypes that use ``pd.NA`` as missing value indicator
        for the resulting DataFrame. (only applicable for the ``pyarrow``
        engine)
        As new dtypes are added that support ``pd.NA`` in the future, the
        output with this option will change to use those dtypes.
        Note: this is an experimental option, and behaviour (e.g. additional
        support dtypes) may change without notice.

        .. deprecated:: 2.0

    dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
        Back-end data type applied to the resultant :class:`DataFrame`
        (still experimental). Behaviour is as follows:

        * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
          (default).
        * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
          DataFrame.

        .. versionadded:: 2.0

    filesystem : fsspec or pyarrow filesystem, default None
        Filesystem object to use when reading the parquet file. Only implemented
        for ``engine="pyarrow"``.

        .. versionadded:: 2.1.0

    filters : List[Tuple] or List[List[Tuple]], default None
        To filter out data.
        Filter syntax: [[(column, op, val), ...],...]
        where op is [==, =, >, >=, <, <=, !=, in, not in]
        The innermost tuples are transposed into a set of filters applied
        through an `AND` operation.
        The outer list combines these sets of filters through an `OR`
        operation.
        A single list of tuples can also be used, meaning that no `OR`
        operation between set of filters is to be conducted.

        Using this argument will NOT result in row-wise filtering of the final
        partitions unless ``engine="pyarrow"`` is also specified.  For
        other engines, filtering is only performed at the partition level, that is,
        to prevent the loading of some row-groups and/or files.

        .. versionadded:: 2.1.0

    **kwargs
        Any additional kwargs are passed to the engine.

    Returns
    -------
    DataFrame

    See Also
    --------
    DataFrame.to_parquet : Create a parquet object that serializes a DataFrame.

    Examples
    --------
    >>> original_df = pd.DataFrame(
    ...     {{"foo": range(5), "bar": range(5, 10)}}
    ...    )
    >>> original_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> df_parquet_bytes = original_df.to_parquet()
    >>> from io import BytesIO
    >>> restored_df = pd.read_parquet(BytesIO(df_parquet_bytes))
    >>> restored_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> restored_df.equals(original_df)
    True
    >>> restored_bar = pd.read_parquet(BytesIO(df_parquet_bytes), columns=["bar"])
    >>> restored_bar
        bar
    0    5
    1    6
    2    7
    3    8
    4    9
    >>> restored_bar.equals(original_df[['bar']])
    True

    The function uses `kwargs` that are passed directly to the engine.
    In the following example, we use the `filters` argument of the pyarrow
    engine to filter the rows of the DataFrame.

    Since `pyarrow` is the default engine, we can omit the `engine` argument.
    Note that the `filters` argument is implemented by the `pyarrow` engine,
    which can benefit from multithreading and also potentially be more
    economical in terms of memory.

    >>> sel = [("foo", ">", 2)]
    >>> restored_part = pd.read_parquet(BytesIO(df_parquet_bytes), filters=sel)
    >>> restored_part
        foo  bar
    0    3    8
    1    4    9
    zYThe argument 'use_nullable_dtypes' is deprecated and will be removed in a future version.TzFUse dtype_backend='numpy_nullable' instead of use_nullable_dtype=True.)
stacklevelF)rc   r   r5   r   r   r   )	r0   r	   r   warningswarnFutureWarningr   r   rd   )r2   r   rc   r5   r   r   r   r   r_   r   msgs              r/   read_parquetr     s    r fD#.00# 	 $&&XC 	c=5E5G5GHHHHH#&&&49	'/#	 	 	 	 	rZ   )r   r   r    r!   )Nr1   F)r2   r3   r4   r   r5   r6   r7   r   r8   r9   r    r:   )Nr#   rr   NNNN)rV   r   r2   r   r   r   r^   rt   ru   rv   r5   r6   rw   rx   r   r   r    r   )r2   r   r   r   rc   rx   r5   r6   r   r   r   r   r   r   r   r   r    r   )6__doc__
__future__r   r   r   rM   typingr   r   r   r   r   pandas._configr   pandas._libsr	   pandas.compat._optionalr
   pandas.errorsr   pandas.util._decoratorsr   pandas.util._exceptionsr   pandas.util._validatorsr   rp   r   r   r   pandas.core.shared_docsr   r   r   pandas.io.commonr   r   r   r   r   pandas._typingr   r   r   r   r   r0   rT   r!   r'   r(   r   r   r   rh   rZ   r/   <module>r      s|     " " " " " " 				  				         
  # # # # # # 5 5 5 5 5 5       > > > > > > - - - - - - ' ' ' ' ' ' 4 4 4 4 4 4 7 7 7 7 7 7            1 0 0 0 0 0 5 5 5 5 5 5                            G G G GJ .2<' <' <' <' <'~
( 
( 
( 
( 
( 
( 
( 
(C  C  C  C  C ( C  C  C Ln  n  n  n  n h n  n  n b \"34555 26&-1'+Z Z Z Z 65Zz \"34555  $-10325.6:q q q q 65q q qrZ   