
    Gd                     @    d Z ddlZg dZd
dZd
dZd
dZd Zdd	ZdS )z 
Eigenvalue spectrum of graphs.
    N)laplacian_spectrumadjacency_spectrummodularity_spectrumnormalized_laplacian_spectrumbethe_hessian_spectrumweightc                     ddl }ddl}|j                            t	          j        | |                                                    S )a  Returns eigenvalues of the Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See :func:`~networkx.convert_matrix.to_numpy_array` for other options.

    See Also
    --------
    laplacian_matrix

    Examples
    --------
    The multiplicity of 0 as an eigenvalue of the laplacian matrix is equal
    to the number of connected components of G.

    >>> G = nx.Graph()  # Create a graph with 5 nodes and 3 connected components
    >>> G.add_nodes_from(range(5))
    >>> G.add_edges_from([(0, 2), (3, 4)])
    >>> nx.laplacian_spectrum(G)
    array([0., 0., 0., 2., 2.])

    r   Nr   )scipyscipy.linalglinalgeigvalshnxlaplacian_matrixtodenseGr   spr   s       8lib/python3.11/site-packages/networkx/linalg/spectrum.pyr   r      sO    L 9b1!FCCCKKMMNNN    c                     ddl }ddl}|j                            t	          j        | |                                                    S )a#  Return eigenvalues of the normalized Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    normalized_laplacian_matrix
    r   Nr
   )r   r   r   r   r   normalized_laplacian_matrixr   r   s       r   r   r   ;   sU    4 9
&q888@@BB  r   c                     ddl }ddl}|j                            t	          j        | |                                                    S )a  Returns eigenvalues of the adjacency matrix of G.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    adjacency_matrix
    r   Nr
   )r   r   r   eigvalsr   adjacency_matrixr   r   s       r   r   r   ]   sN    4 9R06BBBJJLLMMMr   c                     ddl }ddl}|                                 r,|j                            t          j        |                     S |j                            t          j        |                     S )a  Returns eigenvalues of the modularity matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    modularity_matrix

    References
    ----------
    .. [1] M. E. J. Newman, "Modularity and community structure in networks",
       Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
    r   N)r   r   is_directedr   r   r   directed_modularity_matrixmodularity_matrix)r   r   r   s      r   r   r   }   sn    , }} :y  !>q!A!ABBBy  !5a!8!8999r   c                     ddl }ddl}|j                            t	          j        | |                                                    S )u  Returns eigenvalues of the Bethe Hessian matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    r : float
       Regularizer parameter

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    bethe_hessian_matrix

    References
    ----------
    .. [1] A. Saade, F. Krzakala and L. Zdeborová
       "Spectral clustering of graphs with the bethe hessian",
       Advances in Neural Information Processing Systems. 2014.
    r   N)r   r   r   r   r   bethe_hessian_matrixr   )r   rr   r   s       r   r   r      sK    4 9b5a;;CCEEFFFr   r
   )N)	__doc__networkxr   __all__r   r   r   r   r    r   r   <module>r'      s          )O )O )O )OX   DN N N N@: : :>G G G G G Gr   