
    Xf                     4    d Z ddlmZ ddlmZ d Zd Zd ZdS )zpMethods to calculate p-values from a Chi-squared cumulative distribution function.

for likelihood ratio tests.
    )exp)logc                     | dk     rt          d          |dk     rt          d          d|z  }| dz  }dt          ||          z
  }|S )z@Compute p-value, from distribution function and test statistics.   zdf must be at least 1r   z#The test statistic must be positive      ?g       @)
ValueError_incomplete_gamma)dfstatxalphaprobs        3lib/python3.11/site-packages/Bio/Phylo/PAML/chi2.pycdf_chi2r      s^    	Avv0111axx>???d
AHE E***DK    c                    | dk    rt           | }d}|dk     r,d}|}|dk     r||z  }|dz  }|dk     |}t          |           }d||z  z  }||dz
  t          |          z  z   |z
  dz   d|z  dz   |z  dz
  |z  d	z   |z  z   S )
a  Compute the log of the gamma function for a given alpha (PRIVATE).

    Comments from Z. Yang:
    Returns ln(gamma(alpha)) for alpha>0, accurate to 10 decimal places.
    Stirling's formula is used for the central polynomial part of the procedure.
    Pike MC & Hill ID (1966) Algorithm 291: Logarithm of the gamma function.
    Communications of the Association for Computing Machinery, 9:684
    r      r   r   gdg?g48CgJ?gnlf?g=UUUUU?)r   r   )r   r   fzs       r   _ln_gamma_functionr   !   s     zzA	A1uu!eeFAFA !ee VVG	QUA	s7c!ff
	
	 	
 !1$'88A=@QQUVV  			
r   c                 p   |}t          |          }d}d}d}d}d}d}	d}
d}d}| dk    rdS | dk     s|dk    rdS t          |t          |           z  | z
  |z
            }| dk    r5| |k    r/d|z
  }|| z   dz   }	d}d| | dz   | |	z  ddg}|d         |d         z  }n.d}d}|}||k    r|dz  }|| |z  z  }||z  }||k    |||z  z  }|S 	 |dz  }|	dz  }	|dz  }||z  }
t          d          D ]"}|	||dz            z  |
||         z  z
  ||d
z   <   #|d         dk    r6|d
         |d         z  }t	          ||z
            }||k    r|}n
|||z  k    rn]t          d
          D ]}||dz            ||<   t	          |d
                   |k     rt          d
          D ]}||xx         |z  cc<   d||z  z
  }|S )a/  Compute an incomplete gamma ratio (PRIVATE).

    Comments from Z. Yang::

        Returns the incomplete gamma ratio I(x,alpha) where x is the upper
               limit of the integration and alpha is the shape parameter.
        returns (-1) if in error
        ln_gamma_alpha = ln(Gamma(alpha)), is almost redundant.
        (1) series expansion     if alpha>x or x<=1
        (2) continued fraction   otherwise
        RATNEST FORTRAN by
        Bhattacharjee GP (1970) The incomplete gamma integral.  Applied Statistics,
        19: 285-287 (AS32)

    g:0yE>gꌠ9Y>)Fr   r   N      T      )r   r   r   rangeabs)r   r   pgaccurateoverflowginrnabandiftermfactorpnis                   r   r	   r	   D   ss     	A5!!AHH
C	
B	A	A	
B
CDAvvq1uuQrSVVa!#$$F1uuaEEAIAE1q5$-ebemXoo!GBAFND4KC Xoo 	vz
	Q	Q	Xq 	3 	3ABq1uIRU
2Bq1uIIa5A::AABcBh--CX~~2%%q 	 	Aq1uIBqEEr!u::  q 	 	AqEEEXEEEE'( fsl
CJr   N)__doc__mathr   r   r   r   r	    r   r   <module>r0      sr    
            	 	 	     FE E E E Er   