U
    !`7                     @   s   d dl Zd dlmZ d dlmZ d dlZd dlZddlm	Z	m
Z
mZ ddlmZmZ ddlmZmZ ddlmZmZ d	d
dgZdd	 Zeddddddd
ZG dd dee
e	ZdS )    N)interpolate)	spearmanr   )BaseEstimatorTransformerMixinRegressorMixin)check_arraycheck_consistent_length)_check_sample_weight_deprecate_positional_args)'_inplace_contiguous_isotonic_regression_make_uniquecheck_increasingisotonic_regressionIsotonicRegressionc           	      C   s   t | |\}}|dk}|dkrt| dkrdtd| d|   }dtt| d  }t|d|  }t|d|  }t|t|krt	d |S )	aG  Determine whether y is monotonically correlated with x.

    y is found increasing or decreasing with respect to x based on a Spearman
    correlation test.

    Parameters
    ----------
    x : array-like of shape (n_samples,)
            Training data.

    y : array-like of shape (n_samples,)
        Training target.

    Returns
    -------
    increasing_bool : boolean
        Whether the relationship is increasing or decreasing.

    Notes
    -----
    The Spearman correlation coefficient is estimated from the data, and the
    sign of the resulting estimate is used as the result.

    In the event that the 95% confidence interval based on Fisher transform
    spans zero, a warning is raised.

    References
    ----------
    Fisher transformation. Wikipedia.
    https://en.wikipedia.org/wiki/Fisher_transformation
    r   )g            ?   g      ?r   r   g\(\?zwConfidence interval of the Spearman correlation coefficient spans zero. Determination of ``increasing`` may be suspect.)
r   lenmathlogZsqrtZtanhnpZsignwarningswarn)	xyZrho_Zincreasing_boolFZF_seZrho_0Zrho_1 r   /lib/python3.8/site-packages/sklearn/isotonic.pyr      s    "
Tsample_weighty_miny_max
increasingc                C   s   |rt jdd nt jddd }t| dt jt jgd} t j| | | jd} t|| | jd}t || }t	| | |dk	s|dk	r|dkrt j
 }|dkrt j
}t | |||  | | S )a  Solve the isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    Parameters
    ----------
    y : array-like of shape (n_samples,)
        The data.

    sample_weight : array-like of shape (n_samples,), default=None
        Weights on each point of the regression.
        If None, weight is set to 1 (equal weights).

    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool, default=True
        Whether to compute ``y_`` is increasing (if set to True) or decreasing
        (if set to False)

    Returns
    -------
    y_ : list of floats
        Isotonic fit of y.

    References
    ----------
    "Active set algorithms for isotonic regression; A unifying framework"
    by Michael J. Best and Nilotpal Chakravarti, section 3.
    NF)	ensure_2ddtyper&   )r   Zs_r   float64float32arrayr&   r
   Zascontiguousarrayr   infclip)r   r    r!   r"   r#   orderr   r   r   r   O   s    &"
c                       s   e Zd ZdZedddddddZdd	 Zd
d ZdddZdddZ	dd Z
dd Z fddZ fddZdd Z  ZS )r   au
  Isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool or 'auto', default=True
        Determines whether the predictions should be constrained to increase
        or decrease with `X`. 'auto' will decide based on the Spearman
        correlation estimate's sign.

    out_of_bounds : {'nan', 'clip', 'raise'}, default='nan'
        Handles how `X` values outside of the training domain are handled
        during prediction.

        - 'nan', predictions will be NaN.
        - 'clip', predictions will be set to the value corresponding to
          the nearest train interval endpoint.
        - 'raise', a `ValueError` is raised.

    Attributes
    ----------
    X_min_ : float
        Minimum value of input array `X_` for left bound.

    X_max_ : float
        Maximum value of input array `X_` for right bound.

    X_thresholds_ : ndarray of shape (n_thresholds,)
        Unique ascending `X` values used to interpolate
        the y = f(X) monotonic function.

        .. versionadded:: 0.24

    y_thresholds_ : ndarray of shape (n_thresholds,)
        De-duplicated `y` values suitable to interpolate the y = f(X)
        monotonic function.

        .. versionadded:: 0.24

    f_ : function
        The stepwise interpolating function that covers the input domain ``X``.

    increasing_ : bool
        Inferred value for ``increasing``.

    Notes
    -----
    Ties are broken using the secondary method from de Leeuw, 1977.

    References
    ----------
    Isotonic Median Regression: A Linear Programming Approach
    Nilotpal Chakravarti
    Mathematics of Operations Research
    Vol. 14, No. 2 (May, 1989), pp. 303-308

    Isotone Optimization in R : Pool-Adjacent-Violators
    Algorithm (PAVA) and Active Set Methods
    de Leeuw, Hornik, Mair
    Journal of Statistical Software 2009

    Correctness of Kruskal's algorithms for monotone regression with ties
    de Leeuw, Psychometrica, 1977

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.isotonic import IsotonicRegression
    >>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
    >>> iso_reg = IsotonicRegression().fit(X, y)
    >>> iso_reg.predict([.1, .2])
    array([1.8628..., 3.7256...])
    NTnanr!   r"   r#   out_of_boundsc                C   s   || _ || _|| _|| _d S Nr/   )selfr!   r"   r#   r0   r   r   r   __init__   s    zIsotonicRegression.__init__c                 C   s2   |j dks.|j dkr"|jd dks.d}t|d S )Nr      zKIsotonic regression input X should be a 1d array or 2d array with 1 feature)ndimshape
ValueError)r2   Xmsgr   r   r   _check_input_data_shape   s    "z*IsotonicRegression._check_input_data_shapec                    sX   | j dkrtd| j | j dk}t dkr@ fdd| _ntj| d|d| _d	S )
zBuild the f_ interp1d function.raiser.   r,   IThe argument ``out_of_bounds`` must be in 'nan', 'clip', 'raise'; got {0}r<   r   c                    s     | jS r1   )repeatr6   )r   r   r   r   <lambda>       z-IsotonicRegression._build_f.<locals>.<lambda>Zlinear)Zkindbounds_errorN)r0   r7   formatr   f_r   Zinterp1d)r2   r8   r   rB   r   r?   r   _build_f   s    


zIsotonicRegression._build_fc           
   	      sV  |  | |d}| jdkr,t||| _n| j| _t|||jd}|dk}|| || ||   }}}t||f  fdd|||fD \}}}t	|||\}}}|}t
||| j| j| jd}t|t| | _| _|rJtjt|ftd}	tt|dd |d	d
 t|dd |dd	 |	dd< ||	 ||	 fS ||fS d	S )z Build the y_ IsotonicRegression.r$   autor'   r   c                    s   g | ]}|  qS r   r   ).0r*   r-   r   r   
<listcomp>  s     z/IsotonicRegression._build_y.<locals>.<listcomp>r   r   Nr4   )r:   reshaper#   r   Zincreasing_r
   r&   r   Zlexsortr   r   r!   r"   minmaxX_min_X_max_Zonesr   boolZ
logical_orZ	not_equal)
r2   r8   r   r    Ztrim_duplicatesmaskZunique_XZunique_yZunique_sample_weightZ	keep_datar   rH   r   _build_y   s<    


  
 zIsotonicRegression._build_yc                 C   sz   t ddd}t|fdtjtjgi|}t|fd|ji|}t||| | |||\}}|| | _| _	| 
|| | S )a  Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like of shape (n_samples,) or (n_samples, 1)
            Training data.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        y : array-like of shape (n_samples,)
            Training target.

        sample_weight : array-like of shape (n_samples,), default=None
            Weights. If set to None, all weights will be set to 1 (equal
            weights).

        Returns
        -------
        self : object
            Returns an instance of self.

        Notes
        -----
        X is stored for future use, as :meth:`transform` needs X to interpolate
        new input data.
        F)Zaccept_sparser%   r&   )dictr   r   r(   r)   r&   r	   rR   X_thresholds_y_thresholds_rE   )r2   r8   r   r    Zcheck_paramsr   r   r   fit)  s    zIsotonicRegression.fitc                 C   s   t | dr| jj}ntj}t||dd}| | |d}| jdkrVt	d
| j| jdkrrt|| j| j}| |}||j}|S )a  Transform new data by linear interpolation

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            The transformed data
        rT   F)r&   r%   r$   r;   r=   r,   )hasattrrT   r&   r   r(   r   r:   rK   r0   r7   rC   r,   rN   rO   rD   Zastype)r2   Tr&   resr   r   r   	transformX  s    






zIsotonicRegression.transformc                 C   s
   |  |S )a%  Predict new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            Transformed data.
        )rZ   )r2   rX   r   r   r   predict  s    zIsotonicRegression.predictc                    s   t   }|dd |S )z1Pickle-protocol - return state of the estimator. rD   N)super__getstate__popr2   state	__class__r   r   r]     s    
zIsotonicRegression.__getstate__c                    s4   t  | t| dr0t| dr0| | j| j dS )znPickle-protocol - set state of the estimator.

        We need to rebuild the interpolation function.
        rT   rU   N)r\   __setstate__rW   rE   rT   rU   r_   ra   r   r   rc     s    zIsotonicRegression.__setstate__c                 C   s
   ddgiS )NZX_typesZ1darrayr   )r2   r   r   r   
_more_tags  s    zIsotonicRegression._more_tags)T)N)__name__
__module____qualname____doc__r   r3   r:   rE   rR   rV   rZ   r[   r]   rc   rd   __classcell__r   r   ra   r   r      s   T
/
/+	)Znumpyr   Zscipyr   Zscipy.statsr   r   r   baser   r   r   Zutilsr   r	   Zutils.validationr
   r   Z	_isotonicr   r   __all__r   r   r   r   r   r   r   <module>   s"   96