
    &hM                          d Z ddlZddlmZ  ej                  de       	 ddlZd Z	 G d d	      Z
dd
Zd ZddZy# e$ r ddlmZ  ed      dw xY w)a  General Naive Bayes learner (DEPRECATED).

Naive Bayes is a supervised classification algorithm that uses Bayes
rule to compute the fit between a new observation and some previously
observed data.  The observations are discrete feature vectors, with
the Bayes assumption that the features are independent.  Although this
is hardly ever true, the classifier works well enough in practice.

Glossary:
 - observation - A feature vector of discrete data.
 - class       - A possible classification for an observation.

Classes:
 - NaiveBayes - Holds information for a naive Bayes classifier.

Functions:
 - train     - Train a new naive Bayes classifier.
 - calculate - Calculate the probabilities of each class,
   given an observation.
 - classify  - Classify an observation into a class.

    N)BiopythonDeprecationWarningzThe 'Bio.NaiveBayes' module is deprecated and will be removed in a future release of Biopython. Consider using scikit-learn instead.)MissingPythonDependencyErrorzQPlease install NumPy if you want to use Bio.NaiveBayes. See http://www.numpy.org/c                 d    dt        |       z  }i }| D ]  }|j                  |d      |z   ||<    |S )zdReturn a dictionary where the key is the item and the value is the probability associated (PRIVATE).g      ?r   )lenget)itemstermcountsitems       ]/mounts/lovelace/software/anaconda3/envs/py312/lib/python3.12/site-packages/Bio/NaiveBayes.py	_contentsr   5   sB    UDF 2zz$*T1t2M    c                       e Zd ZdZd Zy)
NaiveBayesaU  Hold information for a NaiveBayes classifier.

    Attributes:
     - classes        - List of the possible classes of data.
     - p_conditional  - CLASS x DIM array of dicts of value -> ``P(value|class,dim)``
     - p_prior        - List of the prior probabilities for every class.
     - dimensionality - Dimensionality of the data.

    c                 <    g | _         d| _        g | _        d| _        y)zInitialize the class.N)classesp_conditionalp_priordimensionality)selfs    r   __init__zNaiveBayes.__init__I   s     !"r   N)__name__
__module____qualname____doc__r    r   r   r   r   >   s    #r   r   c                 d   t        |      | j                  k7  r$t        dt        |       d| j                         t        | j                        }t	        j
                  |      }t        |      D ]  }dgt        |      z  }t        t        |            D ]*  }| j                  |   |   j                  ||   d      ||<   , t	        j                  t	        j                  |dd            }t        |      ||<    t	        j                  | j                        }	d}
|rKt	        j                  t	        j                  |	|z   dd	            }t	        j                  t        |            }
i }t        t        | j                              D ]   }||   |	|   z   |
z
  || j                  |   <   " |S )
a  Calculate the logarithmic conditional probability for each class.

    Arguments:
     - nb          - A NaiveBayes classifier that has been trained.
     - observation - A list representing the observed data.
     - scale       - Boolean to indicate whether the probability should be
       scaled by ``P(observation)``.  By default, no scaling is done.

    A dictionary is returned where the key is the class and the value is
    the log probability of the class.
    zobservation in z dimension, but classifier in Nr   gYngu <7~g        iDi  )r   r   
ValueErrorr   npzerosranger   r   logclipsumr   exp)nbobservationscalenlp_observation_classiprobsjlprobslp_priorlp_observationobslp_class_observations                r   	calculater3   Q   s   " ;2,,,c+./ 0""$"3"3!46
 	
 	BJJA88A;1X .[))s;'( 	EA''*1-11+a.!DE!H	Ex9:"%f+Q. vvbjj!H NffRWWX(<<dDIJC) 3rzz?# 
 #hqk1NB 	RZZ]+

  r   c                 p    t        | |d      }dx}}| j                  D ]  }|	||   |kD  s||   |}} |S )z%Classify an observation into a class.F)r(   N)r3   r   )r&   r'   r,   max_prob	max_classklasss         r   classifyr8      sU     b+U3EHy 6uU|h6"',iH6 r   c                 N   t        |       st        d      t        |       t        |      k7  rt        d      | D cg c]  }t        |       }}t        |      t        |      k7  rt        d      t	               }|d   |_        ||}t        t        |            |_        n+t        |      }t        |j                               |_        |}|j                  j                          t        j                  t        |j                              |_        t        t        |j                              D ]!  }	||j                  |	      |j                  |	<   # i }
t!        |j                        D ]
  \  }}||
|<    |j                  D cg c]  }g  }}t        t        |            D ]#  }	||	   | |	   }}||
|      j#                  |       % t        t        |            D ]  }	t        j$                  ||	   |      ||	<     g |_        t        t        |j                              D ]n  }	||	   }|j&                  j#                  dg|j
                  z         t        |j
                        D ]&  }|dd|f   }t        |      |j&                  |	   |<   ( p |S c c}w c c}w )a  Train a NaiveBayes classifier on a training set.

    Arguments:
     - training_set - List of observations.
     - results      - List of the class assignments for each observation.
       Thus, training_set and results must be the same length.
     - priors       - Optional dictionary specifying the prior probabilities
       for each type of result. If not specified, the priors will
       be estimated from the training results.

    zNo data in the training set.z2training_set and results should be parallel lists.z*observations have different dimensionalityr   N)r   r   minmaxr   r   listsetr   r   keyssortr   r    r   r!   	enumerateappendasarrayr   )training_setresultspriorstypecodex
dimensionsr&   percs
class_freqr+   c2iindexkeycobservationsr7   r1   class_observationsr-   valuess                       r   trainrR      sw    |788
<CL(MNN #//Q#a&/J/
:#j/)EFF	B"1B #g,'
w'
*//+,
JJOO#bjj/*BJ3rzz?# -bjjm,

1- C

+ 
sC "

+1B+L+3w<  -QZasSZ '',- 3|$% @**\!_h?Q@ B3rzz?# 7)!_
):): :;r(() 	7A'1-F &/v%6BQ"	77 Io 0> ,s   J	J")F)NN)r   warningsBior   warnnumpyr   ImportErrorr   r   r   r3   r8   rR   r   r   r   <module>rX      s}   .  + A# #&3 lOM  0
&	$ s	   > A