"""
Data classes and utilities used by :class:`iminuit.Minuit`.

You can look up the interface of data classes that iminuit uses here.
"""
import inspect
from collections import OrderedDict
from argparse import Namespace
from . import _repr_html, _repr_text, _deprecated
from . import typing as _mtp
import numpy as np
import typing as _tp
import abc
from time import monotonic
import warnings
import sys

_ArrayLike = _tp.Sequence


class IMinuitWarning(RuntimeWarning):
    """Generic iminuit warning."""


class HesseFailedWarning(IMinuitWarning):
    """HESSE failed warning."""


class PerformanceWarning(UserWarning):
    """Warning about performance issues."""


class BasicView(abc.ABC):
    """
    Array-like view of parameter state.

    Derived classes need to implement methods _set and _get to access
    specific properties of the parameter state.

    :meta private:
    """

    __slots__ = ("_minuit", "_ndim")

    def __init__(self, minuit: _tp.Any, ndim: int = 0):
        """Not to be initialized by users."""
        self._minuit = minuit
        self._ndim = ndim

    def __iter__(self) -> _tp.Generator:
        """Get iterator over values."""
        for i in range(len(self)):
            yield self._get(i)

    def __len__(self) -> int:
        """Get number of paramters."""
        return self._minuit.npar  # type: ignore

    @abc.abstractmethod
    def _get(self, idx: int) -> _tp.Any:
        return NotImplemented  # pragma: no cover

    @abc.abstractmethod
    def _set(self, idx: int, value: _tp.Any) -> None:
        NotImplemented  # pragma: no cover

    def __getitem__(self, key: _mtp.Key) -> _tp.Any:
        """
        Get values of the view.

        Parameters
        ----------
        key: int, str, slice, list of int or str
            If the key is an int or str, return corresponding value.
            If it is a slice, list of int or str, return the corresponding subset.
        """
        index = _key2index(self._minuit._var2pos, key)
        if isinstance(index, list):
            return [self._get(i) for i in index]
        return self._get(index)

    def __setitem__(self, key: _mtp.Key, value: _tp.Any) -> None:
        """Assign a new value at key, which can be an index, parameter name, or slice."""
        self._minuit._copy_state_if_needed()
        index = _key2index(self._minuit._var2pos, key)
        if isinstance(index, list):
            if _ndim(value) == self._ndim:  # support basic broadcasting
                for i in index:
                    self._set(i, value)
            else:
                if len(value) != len(index):
                    raise ValueError("length of argument does not match slice")
                for i, v in zip(index, value):
                    self._set(i, v)
        else:
            self._set(index, value)

    def __eq__(self, other: object) -> bool:
        """Return true if all values are equal."""
        a, b = np.broadcast_arrays(self, other)  # type:ignore
        return _tp.cast(bool, np.all(a == b))

    def __repr__(self) -> str:
        """Get detailed text representation."""
        s = f"<{self.__class__.__name__}"
        for (k, v) in zip(self._minuit._pos2var, self):
            s += f" {k}={v}"
        s += ">"
        return s

    def to_dict(self) -> _tp.Dict[str, float]:
        """Obtain dict representation."""
        return {k: self._get(i) for i, k in enumerate(self._minuit._pos2var)}


def _ndim(obj: _tp.Iterable) -> int:
    nd = 0
    while isinstance(obj, _tp.Iterable):
        nd += 1
        for x in obj:
            if x is not None:
                obj = x
                break
        else:
            break
    return nd


class ValueView(BasicView):
    """Array-like view of parameter values."""

    def _get(self, i: int) -> float:
        return self._minuit._last_state[i].value  # type:ignore

    def _set(self, i: int, value: float) -> None:
        self._minuit._last_state.set_value(i, value)


class ErrorView(BasicView):
    """Array-like view of parameter errors."""

    def _get(self, i: int) -> float:
        return self._minuit._last_state[i].error  # type:ignore

    def _set(self, i: int, value: float) -> None:
        if value <= 0:
            warnings.warn(
                "Assigned errors must be positive. "
                "Non-positive values are replaced by a heuristic."
            )
            value = _guess_initial_step(value)
        self._minuit._last_state.set_error(i, value)


class FixedView(BasicView):
    """Array-like view of whether parameters are fixed."""

    def _get(self, i: int) -> bool:
        return self._minuit._last_state[i].is_fixed  # type:ignore

    def _set(self, i: int, fix: bool) -> None:
        if fix:
            self._minuit._last_state.fix(i)
        else:
            self._minuit._last_state.release(i)

    def __invert__(self) -> list:
        """Return list with inverted elements."""
        return [not self._get(i) for i in range(len(self))]


class LimitView(BasicView):
    """Array-like view of parameter limits."""

    def __init__(self, minuit: _tp.Any):
        """Not to be initialized by users."""
        super(LimitView, self).__init__(minuit, 1)

    def _get(self, i: int) -> _tp.Tuple[float, float]:
        p = self._minuit._last_state[i]
        return (
            p.lower_limit if p.has_lower_limit else -np.inf,
            p.upper_limit if p.has_upper_limit else np.inf,
        )

    def _set(self, i: int, arg: _mtp.UserBound) -> None:
        state = self._minuit._last_state
        val = state[i].value
        err = state[i].error
        # changing limits is a cheap operation, start from clean state
        state.remove_limits(i)
        low, high = _normalize_limit(arg)
        if low != -np.inf and high != np.inf:  # both must be set
            if low == high:
                state.fix(i)
            else:
                state.set_limits(i, low, high)
        elif low != -np.inf:  # lower limit must be set
            state.set_lower_limit(i, low)
        elif high != np.inf:  # lower limit must be set
            state.set_upper_limit(i, high)
        # bug in Minuit2: must set parameter value and error again after changing limits
        if val < low:
            val = low
        elif val > high:
            val = high
        state.set_value(i, val)
        state.set_error(i, err)


def _normalize_limit(lim: _mtp.UserBound) -> _tp.Tuple[float, float]:
    if lim is None:
        return (-np.inf, np.inf)
    a, b = lim
    if a is None:
        a = -np.inf
    if b is None:
        b = np.inf
    if a > b:
        raise ValueError("limit " + str(lim) + " is invalid")
    return a, b


class Matrix(np.ndarray):
    """
    Enhanced Numpy ndarray.

    Works like a normal ndarray in computations, but also supports pretty printing in
    ipython and Jupyter notebooks. Elements can be accessed via indices or parameter
    names.
    """

    __slots__ = ("_var2pos",)

    def __new__(cls, parameters: _tp.Union[_tp.Dict, _tp.Tuple]) -> _tp.Any:
        """Not to be initialized by users."""
        if isinstance(parameters, dict):
            var2pos = parameters
        elif isinstance(parameters, tuple):
            var2pos = {x: i for i, x in enumerate(parameters)}
        else:
            raise TypeError("parameters must be tuple or dict")
        n = len(parameters)
        obj = super().__new__(cls, (n, n))
        obj._var2pos = var2pos
        return obj

    def __array_finalize__(self, obj: _tp.Any) -> None:
        """For internal use."""
        if obj is None:
            self._var2pos: _tp.Dict[str, int] = {}
        else:
            self._var2pos = getattr(obj, "_var2pos", {})

    def __getitem__(  # type:ignore # mypy complains about incompatible signatures
        self,
        key: _tp.Union[
            int,
            str,
            _tp.Tuple[_tp.Union[int, str], _tp.Union[int, str]],
            _tp.Iterable[_tp.Union[int, str]],
            np.ndarray,
            slice,
        ],
    ) -> np.ndarray:
        """Get matrix element at key."""
        import typing as _tp

        var2pos = self._var2pos

        def trafo(key):
            if isinstance(key, str):
                return var2pos[key]
            if isinstance(key, slice):
                return slice(trafo(key.start), trafo(key.stop), key.step)
            if isinstance(key, tuple):
                return tuple(trafo(k) for k in key)
            return key

        if isinstance(key, slice):
            # slice returns square matrix
            sl = trafo(key)
            return super().__getitem__((sl, sl))
        if isinstance(key, (str, tuple)):
            return super().__getitem__(trafo(key))
        if isinstance(key, _tp.Iterable) and not isinstance(key, np.ndarray):
            # iterable returns square matrix
            index2 = [trafo(k) for k in key]  # type:ignore
            t = super().__getitem__(index2).T
            return np.ndarray.__getitem__(t, index2).T
        return super().__getitem__(key)

    def to_dict(self) -> _tp.Dict[_tp.Tuple[str, str], float]:
        """
        Convert matrix to dict.

        Since the matrix is symmetric, the dict only contains the upper triangular matrix.
        """
        names = tuple(self._var2pos)
        d = {}
        for i, pi in enumerate(names):
            for j in range(i, len(names)):
                pj = names[j]
                d[pi, pj] = float(self[i, j])
        return d

    def to_table(self) -> _tp.Tuple[_tp.List[_tp.List[str]], _tp.Tuple[str, ...]]:
        """
        Convert matrix to tabular format.

        The output is consumable by the external
        `tabulate <https://pypi.org/project/tabulate>`_ module.

        Examples
        --------
        >>> import tabulate as tab
        >>> from iminuit import Minuit
        >>> m = Minuit(lambda x, y: x ** 2 + y ** 2, x=1, y=2).migrad()
        >>> tab.tabulate(*m.covariance.to_table())
              x    y
        --  ---  ---
        x     1   -0
        y    -0    4
        """
        names = tuple(self._var2pos)  # type:ignore
        nums = _repr_text.matrix_format(self.flatten())  # type:ignore
        tab = []
        n = len(self)
        for i, name in enumerate(names):
            tab.append([name] + [nums[n * i + j] for j in range(n)])
        return tab, names

    def correlation(self):
        """
        Compute and return correlation matrix.

        If the matrix is already a correlation matrix, this effectively returns a copy
        of the original matrix.
        """
        a = self.copy()
        d = np.diag(a) ** 0.5
        a /= np.outer(d, d) + 1e-100
        return a

    def __repr__(self):
        """Get detailed text representation."""
        return super(Matrix, self).__str__()

    def __str__(self):
        """Get user-friendly text representation."""
        if self.ndim != 2:
            return repr(self)
        return _repr_text.matrix(self)

    def _repr_html_(self):
        return _repr_html.matrix(self)

    def _repr_pretty_(self, p, cycle):
        if cycle:
            p.text("<Matrix ...>")
        else:
            p.text(str(self))

    # ndarray uses __reduce__ for pickling instead of __getstate__
    def __reduce__(self):
        """Get representation for pickling and copying."""
        restore, args, state = super().__reduce__()
        return restore, args, (state, self._var2pos)

    def __setstate__(self, state):
        """Restore from pickled state."""
        state, self._var2pos = state
        super().__setstate__(state)


class FMin:
    """
    Function minimum view.

    This object provides detailed metadata about the function minimum. Inspect this to
    check what exactly happened if the fit did not converge. Use the
    :class:`iminuit.Minuit` object to get the best fit values, their
    uncertainties, or the function value at the minimum. For convenience, you can also
    get a basic OK from :class:`iminuit.Minuit` with the methods
    :attr:`iminuit.Minuit.valid` and :attr:`iminuit.Minuit.accurate`.

    See Also
    --------
    :attr:`iminuit.Minuit.values`
    :attr:`iminuit.Minuit.errors`
    :attr:`iminuit.Minuit.merrors`
    :attr:`iminuit.Minuit.covariance`
    :attr:`iminuit.Minuit.fval`
    :attr:`iminuit.Minuit.valid`
    :attr:`iminuit.Minuit.accurate`
    """

    __slots__ = (
        "_src",
        "_algorithm",
        "_has_parameters_at_limit",
        "_nfcn",
        "_ngrad",
        "_ndof",
        "_edm_goal",
        "_time",
    )

    def __init__(
        self,
        fmin: _tp.Any,
        algorithm: str,
        nfcn: int,
        ngrad: int,
        ndof: int,
        edm_goal: float,
        time: float,
    ):
        """Not to be initialized by users."""
        self._src = fmin
        self._algorithm = algorithm
        self._has_parameters_at_limit = False
        for mp in fmin.state:
            if mp.is_fixed or not mp.has_limits:
                continue
            v = mp.value
            e = mp.error
            lb = mp.lower_limit if mp.has_lower_limit else -np.inf
            ub = mp.upper_limit if mp.has_upper_limit else np.inf
            # the 0.5 error threshold is somewhat arbitrary
            self._has_parameters_at_limit |= min(v - lb, ub - v) < 0.5 * e
        self._nfcn = nfcn
        self._ngrad = ngrad
        self._ndof = ndof
        self._edm_goal = edm_goal
        self._time = time

    @property
    def algorithm(self) -> str:
        """Get algorithm that was used to compute the function minimum."""
        return self._algorithm

    @property
    def edm(self) -> float:
        """
        Get Estimated Distance to Minimum.

        Minuit uses this criterion to determine whether the fit converged. It depends
        on the gradient and the Hessian matrix. It measures how well the current
        second order expansion around the function minimum describes the function, by
        taking the difference between the predicted (based on gradient and Hessian)
        function value at the minimum and the actual value.
        """
        return self._src.edm  # type:ignore

    @property
    def edm_goal(self) -> float:
        """
        Get EDM threshold value for stopping the minimization.

        The threshold is allowed to be violated by a factor of 10 in some situations.
        """
        return self._edm_goal

    @property
    def fval(self) -> float:
        """Get cost function value at the minimum."""
        return self._src.fval  # type:ignore

    @property
    def reduced_chi2(self) -> float:
        """
        Get chi2/ndof of the fit.

        This returns NaN if the cost function is unbinned, errordef is not 1,
        or if the cost function does not report the degrees of freedom.
        """
        if np.isfinite(self._ndof) and self._ndof > 0 and self.errordef == 1:
            return self.fval / self._ndof
        return np.nan

    @property
    def has_parameters_at_limit(self) -> bool:
        """
        Return whether any bounded parameter was fitted close to a bound.

        The estimated error for the affected parameters is usually off. May be an
        indication to remove or loosen the limits on the affected parameter.
        """
        return self._has_parameters_at_limit

    @property
    def nfcn(self) -> int:
        """Get number of function calls so far."""
        return self._nfcn

    @property
    def ngrad(self) -> int:
        """Get number of function gradient calls so far."""
        return self._ngrad

    @property
    def is_valid(self) -> bool:
        """
        Return whether Migrad converged successfully.

        For it to return True, the following conditions need to be fulfilled:

          - :attr:`has_reached_call_limit` is False
          - :attr:`is_above_max_edm` is False

        Note: The actual verdict is computed inside the Minuit2 C++ code, so we
        cannot guarantee that is_valid is exactly equivalent to these conditions.
        """
        return self._src.is_valid  # type:ignore

    @property
    def has_valid_parameters(self) -> bool:
        """
        Return whether parameters are valid.

        This is the same as :attr:`is_valid` and only kept for backward compatibility.
        """
        return self.is_valid

    @property
    def has_accurate_covar(self) -> bool:
        """
        Return whether the covariance matrix is accurate.

        While Migrad runs, it computes an approximation to the current Hessian
        matrix. If the strategy is set to 0 or if the fit did not converge, the
        inverse of this approximation is returned instead of the inverse of the
        accurately computed Hessian matrix. This property returns False if the
        approximation has been returned instead of an accurate matrix computed by
        the Hesse method.
        """
        return self._src.has_accurate_covar  # type:ignore

    @property
    def has_posdef_covar(self) -> bool:
        """
        Return whether the Hessian matrix is positive definite.

        This must be the case if the extremum is a minimum, otherwise it is a saddle
        point. If it returns False, the fitted result may be correct, but the reported
        uncertainties are false. This may affect some parameters or all of them.
        Possible causes:

            * Model contains redundanted parameters that are 100% correlated. Fix:
              remove the parameters that are 100% correlated.
            * Cost function is not computed in double precision. Fix: try adjusting
              :attr:`iminuit.Minuit.precision` or change the cost function to compute
              in double precision.
            * Cost function is not analytical near the minimum. Fix: change the cost
              function to something analytical. Functions are not analytical if:

                * It does computations based on (pseudo)random numbers.
                * It contains vertical steps, for example from code like this::

                      if cond:
                          return value1
                      else:
                          return value2
        """
        return self._src.has_posdef_covar  # type:ignore

    @property
    def has_made_posdef_covar(self) -> bool:
        """
        Return whether the matrix was forced to be positive definite.

        While Migrad runs, it computes an approximation to the current Hessian matrix.
        It can happen that this approximation is not positive definite, but that is
        required to compute the next Newton step. Migrad then adds an appropriate
        diagonal matrix to enforce positive definiteness.

        If the fit has converged successfully, this should always return False. If
        Minuit forced the matrix to be positive definite, the parameter uncertainties
        are false, see :attr:`has_posdef_covar` for more details.
        """
        return self._src.has_made_posdef_covar  # type:ignore

    @property
    def hesse_failed(self) -> bool:
        """Return whether the last call to Hesse failed."""
        return self._src.hesse_failed  # type:ignore

    @property
    def has_covariance(self) -> bool:
        """
        Return whether a covariance matrix was computed at all.

        This is false if the Simplex minimization algorithm was used instead of
        Migrad, in which no approximation to the Hessian is computed.
        """
        return self._src.has_covariance  # type:ignore

    @property
    def is_above_max_edm(self) -> bool:
        """
        Return whether the EDM value is below the convergence threshold.

        Returns True, if the fit did not converge; otherwise returns False.
        """
        return self._src.is_above_max_edm  # type:ignore

    @property
    def has_reached_call_limit(self) -> bool:
        """
        Return whether Migrad exceeded the allowed number of function calls.

        Returns True true, the fit was stopped before convergence was reached;
        otherwise returns False.
        """
        return self._src.has_reached_call_limit  # type:ignore

    @property
    def errordef(self) -> float:
        """Equal to the value of :attr:`iminuit.Minuit.errordef` when Migrad ran."""
        return self._src.errordef  # type:ignore

    @property
    def time(self) -> float:
        """Runtime of the last algorithm."""
        return self._time

    def __eq__(self, other: object) -> bool:
        """Return True if all attributes are equal."""

        def relaxed_equal(k: str, a: object, b: object) -> bool:
            a = getattr(a, k)
            b = getattr(b, k)
            if isinstance(a, float) and np.isnan(a):
                return np.isnan(b)  # type:ignore
            return a == b  # type:ignore

        return all(relaxed_equal(k, self, other) for k in self.__slots__)

    def __repr__(self) -> str:
        """Get detailed text representation."""
        s = "<FMin"
        for key in sorted(dir(self)):
            if key.startswith("_"):
                continue
            val = getattr(self, key)
            s += f" {key}={val!r}"
        s += ">"
        return s

    def __str__(self) -> str:
        """Get user-friendly text representation."""
        return _repr_text.fmin(self)  # type:ignore

    def _repr_html_(self) -> str:
        return _repr_html.fmin(self)  # type:ignore

    def _repr_pretty_(self, p: _tp.Any, cycle: bool) -> None:
        if cycle:
            p.text("<FMin ...>")
        else:
            p.text(str(self))


class Param:
    """Data object for a single Parameter."""

    __slots__ = (
        "number",
        "name",
        "value",
        "error",
        "merror",
        "is_const",
        "is_fixed",
        "lower_limit",
        "upper_limit",
    )

    def __init__(
        self,
        *args: _tp.Union[int, str, float, _tp.Optional[_tp.Tuple[float, float]], bool],
    ):
        """Not to be initialized by users."""
        assert len(args) == len(self.__slots__)
        for k, arg in zip(self.__slots__, args):
            setattr(self, k, arg)

    def __eq__(self, other: object) -> bool:
        """Return True if all values are equal."""
        return all(getattr(self, k) == getattr(other, k) for k in self.__slots__)

    def __repr__(self) -> str:
        """Get detailed text representation."""
        pairs = []
        for k in self.__slots__:
            v = getattr(self, k)
            pairs.append(f"{k}={v!r}")
        return "Param(" + ", ".join(pairs) + ")"

    @property
    def has_limits(self):
        """Query whether the parameter has an lower or upper limit."""
        return self.has_lower_limit or self.has_upper_limit

    @property
    def has_lower_limit(self):
        """Query whether parameter has a lower limit."""
        return self.lower_limit is not None

    @property
    def has_upper_limit(self):
        """Query whether parameter has an upper limit."""
        return self.upper_limit is not None

    def __str__(self) -> str:
        """Get user-friendly text representation."""
        return _repr_text.params([self])  # type:ignore

    def _repr_pretty_(self, p: _tp.Any, cycle: bool) -> None:
        if cycle:
            p.text("Param(...)")
        else:
            p.text(str(self))


class Params(tuple):
    """Tuple-like holder of parameter data objects."""

    __slots__ = ()

    def _repr_html_(self):
        return _repr_html.params(self)

    def to_table(self):
        """
        Convert parameter data to a tabular format.

        The output is consumable by the external
        `tabulate <https://pypi.org/project/tabulate>`_ module.

        Examples
        --------
        >>> import tabulate as tab
        >>> from iminuit import Minuit
        >>> m = Minuit(lambda x, y: x ** 2 + (y / 2) ** 2 + 1, x=0, y=0)
        >>> m.fixed["x"] = True
        >>> m.migrad().minos()
        >>> tab.tabulate(*m.params.to_table())
          pos  name      value    error  error-    error+    limit-    limit+    fixed
        -----  ------  -------  -------  --------  --------  --------  --------  -------
            0  x             0      0.1                                          yes
            1  y             0      1.4  -1.0      1.0
        """
        header = [
            "pos",
            "name",
            "value",
            "error",
            "error-",
            "error+",
            "limit-",
            "limit+",
            "fixed",
        ]
        tab = []
        for i, mp in enumerate(self):
            name = mp.name
            row = [i, name]
            me = mp.merror
            if me:
                val, err, mel, meu = _repr_text.pdg_format(mp.value, mp.error, *me)
            else:
                val, err = _repr_text.pdg_format(mp.value, mp.error)
                mel = ""
                meu = ""
            row += [
                val,
                err,
                mel,
                meu,
                f"{mp.lower_limit}" if mp.lower_limit is not None else "",
                f"{mp.upper_limit}" if mp.upper_limit is not None else "",
                "yes" if mp.is_fixed else "",
            ]
            tab.append(row)
        return tab, header

    def __getitem__(self, key):
        """Get item at key, which can be an index or a parameter name."""
        if isinstance(key, str):
            for i, p in enumerate(self):
                if p.name == key:
                    break
            key = i
        return super(Params, self).__getitem__(key)

    def __str__(self):
        """Get user-friendly text representation."""
        return _repr_text.params(self)

    def _repr_pretty_(self, p, cycle):
        if cycle:
            p.text("Params(...)")
        else:
            p.text(str(self))


class MError:
    """Minos data object.

    Attributes
    ----------
    number : int
        Parameter index.
    name : str
        Parameter name.
    lower : float
        Lower error.
    upper : float
        Upper error.
    is_valid : bool
        Whether Minos computation was successful.
    lower_valid : bool
        Whether downward scan was successful.
    upper_valid : bool
        Whether upward scan was successful.
    at_lower_limit : bool
        Whether scan reached lower limit.
    at_upper_limit : bool
        Whether scan reached upper limit.
    at_lower_max_fcn : bool
        Whether allowed number of function evaluations was exhausted.
    at_upper_max_fcn : bool
        Whether allowed number of function evaluations was exhausted.
    lower_new_min : float
        Parameter value for new minimum, if one was found in downward scan.
    upper_new_min : float
        Parameter value for new minimum, if one was found in upward scan.
    nfcn : int
        Number of function calls.
    min : float
        Function value at the new minimum.
    """

    __slots__ = (
        "number",
        "name",
        "lower",
        "upper",
        "is_valid",
        "lower_valid",
        "upper_valid",
        "at_lower_limit",
        "at_upper_limit",
        "at_lower_max_fcn",
        "at_upper_max_fcn",
        "lower_new_min",
        "upper_new_min",
        "nfcn",
        "min",
    )

    def __init__(self, *args: _tp.Union[int, str, float, bool]):
        """Not to be initialized by users."""
        assert len(args) == len(self.__slots__)
        for k, arg in zip(self.__slots__, args):
            setattr(self, k, arg)

    def __eq__(self, other: object) -> bool:
        """Return True if all values are equal."""
        return all(getattr(self, k) == getattr(other, k) for k in self.__slots__)

    def __repr__(self) -> str:
        """Get detailed text representation."""
        s = "<MError"
        for idx, k in enumerate(self.__slots__):
            v = getattr(self, k)
            s += f" {k}={v!r}"
        s += ">"
        return s

    def __str__(self) -> str:
        """Get user-friendly text representation."""
        return _repr_text.merrors({None: self})  # type:ignore

    def _repr_html_(self) -> str:
        return _repr_html.merrors({None: self})  # type:ignore

    def _repr_pretty_(self, p: _tp.Any, cycle: bool) -> None:
        if cycle:
            p.text("<MError ...>")
        else:
            p.text(str(self))


class MErrors(OrderedDict):
    """Dict-like map from parameter name to Minos result object."""

    __slots__ = ()

    def _repr_html_(self):
        return _repr_html.merrors(self)

    def __repr__(self):
        """Get detailed text representation."""
        return "<MErrors\n  " + ",\n  ".join(repr(x) for x in self.values()) + "\n>"

    def __str__(self):
        """Get user-friendly text representation."""
        return _repr_text.merrors(self)

    def _repr_pretty_(self, p, cycle):
        if cycle:
            p.text("<MErrors ...>")
        else:
            p.text(str(self))

    def __getitem__(self, key):
        """Get item at key, which can be an index or a parameter name."""
        if isinstance(key, int):
            if key < 0:
                key += len(self)
            if key < 0 or key >= len(self):
                raise IndexError("index out of range")
            for i, k in enumerate(self):
                if i == key:
                    break
            key = k
        return OrderedDict.__getitem__(self, key)


def _jacobi(
    fn: _tp.Callable, x: np.ndarray, dx: np.ndarray, tol: float, debug: bool = False
) -> _tp.Tuple[np.ndarray, np.ndarray]:
    assert x.ndim == 1
    assert dx.ndim == 1
    assert np.all(dx >= 0)
    assert tol > 0
    y = fn(x)
    yrank = np.ndim(y)
    jac = np.zeros((1 if yrank == 0 else len(y), len(x)))
    h = np.zeros(len(x))
    divergence = True
    for i, hi in enumerate(dx):
        if i > 0:
            h[i - 1] = 0
        if hi == 0:
            continue
        h[i] = hi
        prev_esq = np.inf
        for iter in range(20):
            assert h[i] > 0
            yu = fn(x + h)
            yd = fn(x - h)
            du = (yu - y) / h[i]
            dd = (y - yd) / h[i]
            d = 0.5 * (du + dd)
            delta = du - dd
            if np.all(np.abs(delta) <= tol * np.abs(d)):
                if debug:
                    print(
                        f"jacobi: iter={iter} converged; delta={delta} "
                        f"threshold={tol * np.abs(d)}"
                    )
                jac[:, i] = d
                break
            esq = np.dot(delta, delta)
            if debug:
                print(f"jacobi: iter={iter} d={d} esq={esq} h={h}")
            if iter > 0 and esq < prev_esq:
                divergence = False
            if esq >= prev_esq:
                if divergence:
                    print(f"jacobi: iter={iter} divergence detected")
                    jac[:, i] = np.nan
                else:
                    print(f"jacobi: iter={iter} no convergence")
                    # no convergence, use previous more accurate jac[:, i]
                break
            jac[:, i] = d
            prev_esq = esq
            h[i] *= 0.1
    return y, jac


@_deprecated.deprecated("use jacobi.propagate instead from jacobi library")
def propagate(
    fn: _tp.Callable,
    x: _tp.Collection[float],
    cov: _tp.Collection[_tp.Collection[float]],
) -> _tp.Tuple[np.ndarray, np.ndarray]:
    """
    Numerically propagates the covariance into a new space.

    This function is deprecated and will be removed. Please use jacobi.propagate from the
    jacobi library, which is more accurate. The signatures of the two functions are
    compatible, so it is a drop-in replacement.

    Parameters
    ----------
    fn: callable
        Vectorized function that computes y = fn(x).
    x: array-like with shape (N,)
        Input vector.
    cov: array-like with shape (N, N)
        Covariance matrix of input vector.

    Returns
    -------
    y, ycov
        y is the result of fn(x)
        ycov is the propagated covariance matrix.
    """
    vx = np.atleast_1d(x)  # type:ignore
    if np.ndim(cov) != 2:  # type:ignore
        raise ValueError("cov must be 2D array-like")
    vcov = np.atleast_2d(cov)  # type:ignore
    if vcov.shape[0] != vcov.shape[1]:
        raise ValueError("cov must have shape (N, N)")
    tol = 1e-2
    dx = (np.diag(vcov) * tol) ** 0.5
    if not np.all(dx >= 0):
        raise ValueError("diagonal elements of covariance matrix must be non-negative")
    y, jac = _jacobi(fn, vx, dx, tol)
    ycov = np.einsum("ij,kl,jl", jac, jac, vcov)
    return y, np.squeeze(ycov) if np.ndim(y) == 0 else ycov


class _Timer:
    def __init__(self, fmin):
        self.value = fmin.time if fmin else 0.0

    def __enter__(self):
        self.value += monotonic()

    def __exit__(self, *args):
        self.value = monotonic() - self.value


def make_func_code(params: _tp.Collection[str]) -> Namespace:
    """
    Make a func_code object to fake a function signature.

    Example::

        def f(a, b): ...

        f.func_code = make_func_code(["x", "y"])
    """
    return Namespace(co_varnames=tuple(params), co_argcount=len(params))


def make_with_signature(
    callable: _tp.Callable, *varnames: str, **replacements: str
) -> _tp.Callable:
    """
    Return new callable with altered signature.

    Parameters
    ----------
    *varnames: sequence of str
        Replace the first N argument names with these.
    **replacements: mapping of str to str
        Replace old argument name (key) with new argument name (value).

    Returns
    -------
    callable with new argument names.
    """
    if replacements:
        d = describe(callable)
        if d:
            n = len(varnames)
            if n > len(d):
                raise ValueError("varnames longer than original signature")
            d[:n] = varnames
        for k, v in replacements.items():
            d[d.index(k)] = v
        vars = tuple(d)
    else:
        vars = varnames

    if hasattr(callable, "__code__"):
        c = callable.__code__
        if c.co_argcount != len(vars):
            raise ValueError("number of parameters do not match")

    class Caller:
        def __init__(self, varnames: _tp.Tuple[str, ...]):
            self.func_code = make_func_code(varnames)  # type:ignore

        def __call__(self, *args: object) -> object:
            return callable(*args)

    return Caller(vars)


def merge_signatures(
    callables: _tp.Iterable[_tp.Callable],
) -> _tp.Tuple[_tp.List[str], _tp.List[_tp.Tuple[int, ...]]]:
    """
    Merge signatures of callables with positional arguments.

    This is best explained by an example::

        def f(x, y, z): ...

        def g(x, p): ...

        parameters, mapping = merge_signatures(f, g)
        # parameters is ('x', 'y', 'z', 'p')
        # mapping is ((0, 1, 2), (0, 3))

    Parameters
    ----------
    callable : callable
        Callable whose parameters can be extracted with :func:`describe`.

    Returns
    -------
    tuple(parameters, mapping)
        parameters is the tuple of the merged parameter names.
        mapping contains the mapping of parameters indices from the merged signature to
        the original signatures.
    """
    from typing import List

    args: List[str] = []
    mapping = []

    for f in callables:
        map = []
        for i, k in enumerate(describe(f)):
            if k in args:
                map.append(args.index(k))
            else:
                map.append(len(args))
                args.append(k)
        mapping.append(tuple(map))

    return args, mapping


def describe(callable: _tp.Callable) -> _tp.List[str]:
    """
    Attempt to extract the function argument names.

    Parameters
    ----------
    callable : callable
        Callable whose parameters should be extracted.

    Returns
    -------
    list
        Returns a list of strings with the parameters names if successful and an empty
        list otherwise.

    Notes
    -----
    Parameter names are extracted with the following three methods, which are attempted
    in order. The first to succeed determines the result.

    1. Using ``obj.func_code``. If an objects has a ``func_code`` attribute, it is used
       to detect the parameters. Examples::

           def f(*args): # no signature
               x, y = args
               return (x - 2) ** 2 + (y - 3) ** 2

           f.func_code = make_func_code(("x", "y"))

       Users are encouraged to use this mechanism to provide signatures for objects that
       otherwise would not have a detectable signature. The function
       :func:`make_func_code` can be used to generate an appropriate func_code object.
       An example where this is useful is shown in one of the tutorials.

    2. Using :func:`inspect.signature`. The :mod:`inspect` module provides a general
       function to extract the signature of a Python callable. It works on most
       callables, including Functors like this::

        class MyLeastSquares:
            def __call__(self, a, b):
                # ...

    3. Using the docstring. The docstring is textually parsed to detect the parameter
       names. This requires that a docstring is present which follows the Python
       standard formatting for function signatures.

    Ambiguous cases with positional and keyword argument are handled in the following
    way::

        # describe returns [a, b];
        # *args and **kwargs are ignored
        def fcn(a, b, *args, **kwargs): ...

        # describe returns [a, b, c];
        # positional arguments with default values are detected
        def fcn(a, b, c=1): ...
    """
    if _address_of_cfunc(callable) != 0:
        return []
    return (
        _arguments_from_func_code(callable)
        or _arguments_from_inspect(callable)
        or _arguments_from_docstring(callable)
    )


def _arguments_from_func_code(obj: _tp.Any) -> _tp.List[str]:
    # Check (faked) f.func_code; for backward-compatibility with iminuit-1.x
    if hasattr(obj, "func_code"):
        fc = obj.func_code
        return list(fc.co_varnames[: fc.co_argcount])
    return []


def _arguments_from_inspect(obj: _tp.Callable) -> _tp.List[str]:
    try:
        # fails for builtin on Windows and OSX in Python 3.6
        signature = inspect.signature(obj)
    except ValueError:
        return []

    args = []
    for name, par in signature.parameters.items():
        # stop when variable number of arguments is encountered
        if par.kind is inspect.Parameter.VAR_POSITIONAL:
            break
        # stop when keyword argument is encountered
        if par.kind is inspect.Parameter.VAR_KEYWORD:
            break
        args.append(name)
    return args


def _arguments_from_docstring(obj: _tp.Callable) -> _tp.List[str]:
    doc = inspect.getdoc(obj)

    if doc is None:
        return []

    # Examples of strings we want to parse:
    #   min(iterable, *[, default=obj, key=func]) -> value
    #   min(arg1, arg2, *args, *[, key=func]) -> value
    #   Foo.bar(self, int ncall_me =10000, [resume=True, int nsplit=1])

    try:
        # function wrapper functools.partial does not offer __name__,
        # we cannot extract the signature in this case
        name = obj.__name__
    except AttributeError:
        return []

    token = name + "("
    start = doc.find(token)
    if start < 0:
        return []
    start += len(token)

    nbrace = 1
    for ich, ch in enumerate(doc[start:]):
        if ch == "(":
            nbrace += 1
        elif ch == ")":
            nbrace -= 1
        if nbrace == 0:
            break
    items = [x.strip(" []") for x in doc[start : start + ich].split(",")]

    if items[0] == "self":
        items = items[1:]

    #   "iterable", "*", "default=obj", "key=func"
    #   "arg1", "arg2", "*args", "*", "key=func"
    #   "int ncall_me =10000", "resume=True", "int nsplit=1"

    try:
        i = items.index("*args")
        items = items[:i]
    except ValueError:
        pass

    #   "iterable", "*", "default=obj", "key=func"
    #   "arg1", "arg2", "*", "key=func"
    #   "int ncall_me =10000", "resume=True", "int nsplit=1"

    def extract(s: str) -> str:
        a = s.find(" ")
        b = s.find("=")
        if a < 0:
            a = 0
        if b < 0:
            b = len(s)
        return s[a:b].strip()

    items = [extract(x) for x in items if x != "*"]

    #   "iterable", "default", "key"
    #   "arg1", "arg2", "key"
    #   "ncall_me", "resume", "nsplit"

    return items


def _guess_initial_step(val: float) -> float:
    return 1e-2 * abs(val) if val != 0 else 1e-1  # heuristic


def _key2index_from_slice(var2pos: _tp.Dict[str, int], key: slice) -> _tp.List[int]:
    start = var2pos[key.start] if isinstance(key.start, str) else key.start
    stop = var2pos[key.stop] if isinstance(key.stop, str) else key.stop
    start, stop, step = slice(start, stop, key.step).indices(len(var2pos))
    return list(range(start, stop, step))


def _key2index_item(var2pos: _tp.Dict[str, int], key: _tp.Union[str, int]) -> int:
    if isinstance(key, str):
        return var2pos[key]
    i = key
    if i < 0:
        i += len(var2pos)
    if i < 0 or i >= len(var2pos):
        raise IndexError
    return i


def _key2index(
    var2pos: _tp.Dict[str, int],
    key: _mtp.Key,
) -> _tp.Union[int, _tp.List[int]]:
    import typing as _tp

    if isinstance(key, slice):
        return _key2index_from_slice(var2pos, key)
    if not isinstance(key, str) and isinstance(key, _tp.Iterable):
        # convert boolean masks into list of indices
        if isinstance(key[0], bool):
            key = [k for k in range(len(var2pos)) if key[k]]
        return [_key2index_item(var2pos, k) for k in key]
    return _key2index_item(var2pos, key)


def _address_of_cfunc(fcn: _tp.Any) -> int:
    from ctypes import c_void_p, c_double, c_uint32, POINTER, CFUNCTYPE, cast

    c_sig = CFUNCTYPE(c_double, c_uint32, POINTER(c_double))

    fcn = getattr(fcn, "ctypes", None)
    if isinstance(fcn, c_sig):
        return cast(fcn, c_void_p).value  # type: ignore
    return 0


def _iterate(x):
    if not isinstance(x, _tp.Iterable):
        yield x
    else:
        for xi in x:
            yield xi


def _replace_none(x, v):
    if x is None:
        return v
    return x


# poor-mans progressbar if progressbar2 is not available
class _ProgressBar:
    def _update(self, v):
        self._out.write(f"\r{100 * v:.0f} %")
        self._out.flush()

    def _finish(self):
        self._out.write("\r     ")
        self._out.flush()

    def __init__(self, max_value):
        self.max_value = max_value
        self._out = sys.stdout

        try:
            from ipykernel.iostream import OutStream

            if isinstance(self._out, OutStream):
                from IPython.display import display, HTML

                self._update = lambda v: display(
                    HTML(
                        f"<progress value='{100 * v:.0f}' max='100'></progress> "
                        f"{100 * v:.0f} %"
                    ),
                    clear=True,
                )
                self._finish = lambda: display(HTML(""), clear=True)
        except ModuleNotFoundError:
            pass

    def __enter__(self, *args):
        self.value = 0
        self._update(0)
        return self

    def __exit__(self, *args):
        self._finish()

    def __add__(self, v):
        self.value += v
        self._update(self.value / self.max_value)
        return self


def _histogram_segments(mask, xe, masked):
    assert masked.ndim == 1

    if mask is None:
        return [(masked, xe)]

    segments = []
    a = 0
    b = 0
    am = 0
    n = len(mask)
    while a < n:
        if not mask[a]:
            a += 1
            continue
        b = a + 1
        while b < n and mask[b]:
            b += 1
        segments.append((masked[am : am + b - a], xe[a : b + 1]))
        am += b - a
        a = b + 1
    return segments


def _show_inline_matplotlib_plots():
    # Code taken from ipywidgets/interactive.py
    #
    # See comments in the original why this is needed.
    #
    # Copyright (c) Jupyter Development Team.
    # Distributed under the terms of the Modified BSD License.
    #
    # This version was stripped down and modified to remove a deprecation warning.
    try:
        import matplotlib as mpl
        from matplotlib_inline.backend_inline import flush_figures
    except ImportError:  # pragma: no cover
        return  # pragma: no cover

    if (
        mpl.get_backend() == "module://ipykernel.pylab.backend_inline"
        or mpl.get_backend() == "module://matplotlib_inline.backend_inline"
    ):
        flush_figures()  # pragma: no cover


def _smart_sampling(f, xmin, xmax, start=5, tol=5e-3):
    x = np.linspace(xmin, xmax, start)
    ynew = f(x)
    ymin = np.min(ynew)
    ymax = np.max(ynew)
    y = {xi: yi for (xi, yi) in zip(x, ynew)}
    a = x[:-1]
    b = x[1:]
    while len(a):
        if len(y) > 10000:
            warnings.warn("Too many points", RuntimeWarning)  # pragma: no cover
            break  # pragma: no cover
        xnew = 0.5 * (a + b)
        ynew = f(xnew)
        ymin = min(ymin, np.min(ynew))
        ymax = max(ymax, np.max(ynew))
        for xi, yi in zip(xnew, ynew):
            y[xi] = yi
        yint = 0.5 * (
            np.fromiter((y[ai] for ai in a), float)
            + np.fromiter((y[bi] for bi in b), float)
        )
        dy = np.abs(ynew - yint)

        mask = dy > tol * (ymax - ymin)

        # intervals which do not pass interpolation test
        a = a[mask]
        b = b[mask]
        xnew = xnew[mask]
        a = np.append(a, xnew)
        b = np.append(xnew, b)

    xy = list(y.items())
    xy.sort()
    return np.transpose(xy)
