
    Lgo                     T   S r SSKrSSKJrJrJr   SSKJrJ	r	J
r
JrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJ r J!r!J"r"J#r#J$r$J$r%J&r&  SSK*J+r+J,r,J-r-  Sr.S	r/ SS
K0J1r1  Sr.Sr2Sr3 SSK4J5r5J6r6J7r7J8r8J9r9J:r:J;r;J<r<  Sr2 SSK=J>r>J?r?  S r@  SS jrAS rBS rCSS jrDSS jrE    S S jrFSS jrGSS jrH  S!S jrI   S S jrJS rKSSSSSSSSSSSSSSSSS.S jrLg! \' a  r(\'" S\)" \(5       S35      SeSr(C(ff = f! \' a     Nf = f! \' a     Nf = f! \' a     Nf = f)"zEDataset is currently unstable. APIs subject to change without notice.    N)_is_iterable_stringify_path_is_path_like)CsvFileFormatCsvFragmentScanOptionsJsonFileFormatJsonFragmentScanOptionsDatasetDatasetFactoryDirectoryPartitioningFeatherFileFormatFilenamePartitioning
FileFormatFileFragmentFileSystemDatasetFileSystemDatasetFactoryFileSystemFactoryOptionsFileWriteOptionsFragmentFragmentScanOptionsHivePartitioningIpcFileFormatIpcFileWriteOptionsInMemoryDatasetPartitioningPartitioningFactoryScannerTaggedRecordBatchUnionDatasetUnionDatasetFactoryWrittenFileget_partition_keysr"   _filesystemdataset_writezBThe pyarrow installation is not built with support for 'dataset' ())
ExpressionscalarfieldFzKThe pyarrow installation is not built with support for the ORC file format.)OrcFileFormatTzOThe pyarrow installation is not built with support for the Parquet file format.)ParquetDatasetFactoryParquetFactoryOptionsParquetFileFormatParquetFileFragmentParquetFileWriteOptionsParquetFragmentScanOptionsParquetReadOptionsRowGroupInfo)ParquetDecryptionConfigParquetEncryptionConfigc                     U S:X  a  [         (       d  [        [        5      eU S:X  a  [        (       d  [        [        5      e[        SR                  U 5      5      e)Nr(   r+   z/module 'pyarrow.dataset' has no attribute '{0}')_orc_availableImportError_orc_msg_parquet_available_parquet_msgAttributeErrorformat)names    /lib/python3.12/site-packages/pyarrow/dataset.py__getattr__r=   m   sN    ~~(##""+=+=,''
9@@F     c                    Uc  U b3  Ub  [        S5      eUS:X  a  [        R                  " U S9$ [        X5      $ UbN  [        U[        5      (       a  [        R                  " U5      $ [        SR                  [        U5      5      5      e[        S5      eUS:X  a  U b3  Ub  [        S5      eUS:X  a  [        R                  " U S9$ [        X5      $ UbN  [        U[        5      (       a  [        R                  " U5      $ [        SR                  [        U5      5      5      e[        S5      eUS:X  a  Ub  [        S	5      eU bg  [        U [        R                  5      (       a%  US:X  a  [        R                  " U S9$ [        X5      $ [        S
R                  [        U 5      5      5      e[        R                  " 5       $ [        S5      e)a  
Specify a partitioning scheme.

The supported schemes include:

- "DirectoryPartitioning": this scheme expects one segment in the file path
  for each field in the specified schema (all fields are required to be
  present). For example given schema<year:int16, month:int8> the path
  "/2009/11" would be parsed to ("year"_ == 2009 and "month"_ == 11).
- "HivePartitioning": a scheme for "/$key=$value/" nested directories as
  found in Apache Hive. This is a multi-level, directory based partitioning
  scheme. Data is partitioned by static values of a particular column in
  the schema. Partition keys are represented in the form $key=$value in
  directory names. Field order is ignored, as are missing or unrecognized
  field names.
  For example, given schema<year:int16, month:int8, day:int8>, a possible
  path would be "/year=2009/month=11/day=15" (but the field order does not
  need to match).
- "FilenamePartitioning": this scheme expects the partitions will have
  filenames containing the field values separated by "_".
  For example, given schema<year:int16, month:int8, day:int8>, a possible
  partition filename "2009_11_part-0.parquet" would be parsed
  to ("year"_ == 2009 and "month"_ == 11).

Parameters
----------
schema : pyarrow.Schema, default None
    The schema that describes the partitions present in the file path.
    If not specified, and `field_names` and/or `flavor` are specified,
    the schema will be inferred from the file path (and a
    PartitioningFactory is returned).
field_names :  list of str, default None
    A list of strings (field names). If specified, the schema's types are
    inferred from the file paths (only valid for DirectoryPartitioning).
flavor : str, default None
    The default is DirectoryPartitioning. Specify ``flavor="hive"`` for
    a HivePartitioning, and ``flavor="filename"`` for a
    FilenamePartitioning.
dictionaries : dict[str, Array]
    If the type of any field of `schema` is a dictionary type, the
    corresponding entry of `dictionaries` must be an array containing
    every value which may be taken by the corresponding column or an
    error will be raised in parsing. Alternatively, pass `infer` to have
    Arrow discover the dictionary values, in which case a
    PartitioningFactory is returned.

Returns
-------
Partitioning or PartitioningFactory
    The partitioning scheme

Examples
--------

Specify the Schema for paths like "/2009/June":

>>> import pyarrow as pa
>>> import pyarrow.dataset as ds
>>> part = ds.partitioning(pa.schema([("year", pa.int16()),
...                                   ("month", pa.string())]))

or let the types be inferred by only specifying the field names:

>>> part =  ds.partitioning(field_names=["year", "month"])

For paths like "/2009/June", the year will be inferred as int32 while month
will be inferred as string.

Specify a Schema with dictionary encoding, providing dictionary values:

>>> part = ds.partitioning(
...     pa.schema([
...         ("year", pa.int16()),
...         ("month", pa.dictionary(pa.int8(), pa.string()))
...     ]),
...     dictionaries={
...         "month": pa.array(["January", "February", "March"]),
...     })

Alternatively, specify a Schema with dictionary encoding, but have Arrow
infer the dictionary values:

>>> part = ds.partitioning(
...     pa.schema([
...         ("year", pa.int16()),
...         ("month", pa.dictionary(pa.int8(), pa.string()))
...     ]),
...     dictionaries="infer")

Create a Hive scheme for a path like "/year=2009/month=11":

>>> part = ds.partitioning(
...     pa.schema([("year", pa.int16()), ("month", pa.int8())]),
...     flavor="hive")

A Hive scheme can also be discovered from the directory structure (and
types will be inferred):

>>> part = ds.partitioning(flavor="hive")
z.Cannot specify both 'schema' and 'field_names'inferschemaz$Expected list of field names, got {}zSFor the default directory flavor, need to specify a Schema or a list of field namesfilenamezJFor the filename flavor, need to specify a Schema or a list of field nameshivez.Cannot specify 'field_names' for flavor 'hive'z$Expected Schema for 'schema', got {}zUnsupported flavor)
ValueErrorr   discover
isinstancelistr:   typer   paSchemar   )rB   field_namesflavordictionariess       r<   partitioningrO   y   s   L ~& DF Fw&,55VDD(>>$+t,,,55kBB :AA[)+, , 45 5 & DF Fw&+44FCC'==$+t,,+44[AA :AA[)+, , 45 5 
6	"MNN&")),,7*+44FCC'== :AAV&' ' $,,..-..r>   c                    U c   U $ [        U [        5      (       a  [        U S9n U $ [        U [        5      (       a  [        U S9n U $ [        U [        [
        45      (       a   U $ [        SR                  [        U 5      5      5      e)zr
Validate input and return a Partitioning(Factory).

It passes None through if no partitioning scheme is defined.
rM   )rL   z4Expected Partitioning or PartitioningFactory, got {})	rG   strrO   rH   r   r   rE   r:   rI   )schemes    r<   _ensure_partitioningrT     s     ~ M 
FC	 	 V, M 
FD	!	!&1 M 
F\+>?	@	@ M O &f.0 	0r>   c                    [        U [        5      (       a  U $ U S:X  a$  [        (       d  [        [        5      e[        5       $ U S;   a
  [        5       $ U S:X  a
  [        5       $ U S:X  a
  [        5       $ U S:X  a$  [        (       d  [        [        5      e[        5       $ U S:X  a
  [        5       $ [        SR                  U 5      5      e)Nparquet>   ipcarrowfeathercsvorcjsonzformat '{}' is not supported)rG   r   r7   rE   r8   r+   r   r   r   r4   r6   r(   r   r:   )objs    r<   _ensure_formatr^   ,  s    #z""
			!!\** ""	 	 			 ""		~X&&	7>>sCDDr>   c                    SSK JnJnJnJnJn  Uc  U" 5       nOU" U5      n[        XU45      =(       d(    [        X5      =(       a    [        UR                  U5      nU  Vs/ s H  oR                  [        U5      5      PM     n nU(       a  UR                  U 5       H  n	U	R                  n
XR                  :X  a  M   XR                  :X  a  [        U	R                  5      eXR                   :X  a$  [#        SR%                  U	R                  5      5      e['        SR%                  U	R                  5      5      e   X4$ s  snf )a  
Treat a list of paths as files belonging to a single file system

If the file system is local then also validates that all paths
are referencing existing *files* otherwise any non-file paths will be
silently skipped (for example on a remote filesystem).

Parameters
----------
paths : list of path-like
    Note that URIs are not allowed.
filesystem : FileSystem or str, optional
    If an URI is passed, then its path component will act as a prefix for
    the file paths.

Returns
-------
(FileSystem, list of str)
    File system object and a list of normalized paths.

Raises
------
TypeError
    If the passed filesystem has wrong type.
IOError
    If the file system is local and a referenced path is not available or
    not a file.
r   )LocalFileSystemSubTreeFileSystem_MockFileSystemFileType_ensure_filesystemzPath {} points to a directory, but only file paths are supported. To construct a nested or union dataset pass a list of dataset objects instead.zPath {} exists but its type is unknown (could be a special file such as a Unix socket or character device, or Windows NUL / CON / ...))
pyarrow.fsr`   ra   rb   rc   rd   rG   base_fsnormalize_pathr   get_file_inforI   FileNotFoundFileNotFoundErrorpath	DirectoryIsADirectoryErrorr:   IOError)paths
filesystemr`   ra   rb   rc   rd   is_localpinfo	file_types              r<   _ensure_multiple_sourcesrv   C  s.   : 
 $&
 (
3
 	:AB 	:	J	2 
9	J&&	8  EJJEq&&q'9:EEJ
 ,,U3D		IMM)///'		22000'99?		9J  228&2C  4& 3 Ks   "#D?c                    SSK JnJnJn  U" X5      u  pUR	                  U 5      n UR                  U 5      nUR                  UR                  :X  a
  U" U SS9nX4$ UR                  UR                  :X  a  U /nX4$ [        U 5      e)aB  
Treat path as either a recursively traversable directory or a single file.

Parameters
----------
path : path-like
filesystem : FileSystem or str, optional
    If an URI is passed, then its path component will act as a prefix for
    the file paths.

Returns
-------
(FileSystem, list of str or fs.Selector)
    File system object and either a single item list pointing to a file or
    an fs.Selector object pointing to a directory.

Raises
------
TypeError
    If the passed filesystem has wrong type.
FileNotFoundError
    If the referenced file or directory doesn't exist.
r   )rc   FileSelector_resolve_filesystem_and_pathT)	recursive)
re   rc   rx   ry   rg   rh   rI   rm   ri   rk   )rl   rq   rc   rx   ry   	file_infopaths_or_selectors          r<   _ensure_single_sourcer}     s    0 PO 4DEJ $$T*D ((.I ~~+++(> (( 
8==	(!F ((  %%r>   c                 t   SSK JnJn	Jn
  [	        U=(       d    S5      n[        U5      n[        U [        [        45      (       a?  U (       a*  [        U S   U
5      (       a  Uc  U" 5       nOU	" U5      nU nO[        X5      u  pO[        X5      u  p[        UUUUS9n[        XXM5      nUR                  U5      $ )z
Create a FileSystemDataset which can be used to build a Dataset.

Parameters are documented in the dataset function.

Returns
-------
FileSystemDataset
r   )r`   rd   FileInforV   )rO   partition_base_direxclude_invalid_filesselector_ignore_prefixes)re   r`   rd   r   r^   rT   rG   rH   tuplerv   r}   r   r   finish)sourcerB   rq   rO   r:   r   r   r   r`   rd   r   fsr|   optionsfactorys                  r<   _filesystem_datasetr     s     IHF/i0F'5L&4-((jH55!$& (
3 &$<V$P!B! 5f I&!-3!9	G 'rfNG>>&!!r>   c                 x    [        S UR                  5        5       5      (       a  [        S5      e[        X5      $ )Nc              3   (   #    U  H  oS Lv   M
     g 7fN .0vs     r<   	<genexpr>%_in_memory_dataset.<locals>.<genexpr>       
2/QD=/   z@For in-memory datasets, you cannot pass any additional arguments)anyvaluesrE   r   )r   rB   kwargss      r<   _in_memory_datasetr     s6    

2&--/
222NP 	P6**r>   c                 ~   [        S UR                  5        5       5      (       a  [        S5      eUc0  [        R                  " U  Vs/ s H  o3R
                  PM     sn5      nU  H   n[        USS 5      (       d  M  [        S5      e   U  Vs/ s H  o3R                  U5      PM     n n[        X5      $ s  snf s  snf )Nc              3   (   #    U  H  oS Lv   M
     g 7fr   r   r   s     r<   r   !_union_dataset.<locals>.<genexpr>  r   r   zIWhen passing a list of Datasets, you cannot pass any additional arguments_scan_optionszCreating an UnionDataset from filtered or projected Datasets is currently not supported. Union the unfiltered datasets and apply the filter to the resulting union.)	r   r   rE   rJ   unify_schemasrB   getattrreplace_schemar   )childrenrB   r   childs       r<   _union_datasetr     s    

2&--/
222
 	

 ~!!X"FXE<<X"FG5/400?   ;CC($$V,(HC)) #G Ds   B5B:c                 $   SSK JnJn  Uc  [        5       nO [	        U[        5      (       d  [        S5      eUc  U" 5       nOU" U5      nUR                  [        U 5      5      n [        U[        U5      S9n[        XX8S9n	U	R                  U5      $ )a   
Create a FileSystemDataset from a `_metadata` file created via
`pyarrow.parquet.write_metadata`.

Parameters
----------
metadata_path : path,
    Path pointing to a single file parquet metadata file
schema : Schema, optional
    Optionally provide the Schema for the Dataset, in which case it will
    not be inferred from the source.
filesystem : FileSystem or URI string, default None
    If a single path is given as source and filesystem is None, then the
    filesystem will be inferred from the path.
    If an URI string is passed, then a filesystem object is constructed
    using the URI's optional path component as a directory prefix. See the
    examples below.
    Note that the URIs on Windows must follow 'file:///C:...' or
    'file:/C:...' patterns.
format : ParquetFileFormat
    An instance of a ParquetFileFormat if special options needs to be
    passed.
partitioning : Partitioning, PartitioningFactory, str, list of str
    The partitioning scheme specified with the ``partitioning()``
    function. A flavor string can be used as shortcut, and with a list of
    field names a DirectoryPartitioning will be inferred.
partition_base_dir : str, optional
    For the purposes of applying the partitioning, paths will be
    stripped of the partition_base_dir. Files not matching the
    partition_base_dir prefix will be skipped for partitioning discovery.
    The ignored files will still be part of the Dataset, but will not
    have partition information.

Returns
-------
FileSystemDataset
    The dataset corresponding to the given metadata
r   )r`   rd   z+format argument must be a ParquetFileFormat)r   rO   )r   )re   r`   rd   r+   rG   rE   rg   r   r*   rT   r)   r   )
metadata_pathrB   rq   r:   rO   r   r`   rd   r   r   s
             r<   parquet_datasetr   	  s    P ?~"$ 122FGG$&
'
3
--om.LMM#-),7G
 $6<G>>&!!r>   c           
        ^ SSK Jm  [        UUUUUUUS9n[        U 5      (       a  [	        U 40 UD6$ [        U [        [        45      (       a  [        U4S jU  5       5      (       a  [	        U 40 UD6$ [        S U  5       5      (       a  [        U 40 UD6$ [        S U  5       5      (       a  [        U 40 UD6$ [        S U  5       5      n	SR                  S	 U	 5       5      n
[        S
R                  U
5      5      e[        U [        R                   [        R"                  45      (       a  [        U 40 UD6$ [        SR                  [%        U 5      R&                  5      5      e)a  
Open a dataset.

Datasets provides functionality to efficiently work with tabular,
potentially larger than memory and multi-file dataset.

- A unified interface for different sources, like Parquet and Feather
- Discovery of sources (crawling directories, handle directory-based
  partitioned datasets, basic schema normalization)
- Optimized reading with predicate pushdown (filtering rows), projection
  (selecting columns), parallel reading or fine-grained managing of tasks.

Note that this is the high-level API, to have more control over the dataset
construction use the low-level API classes (FileSystemDataset,
FilesystemDatasetFactory, etc.)

Parameters
----------
source : path, list of paths, dataset, list of datasets, (list of) RecordBatch or Table, iterable of RecordBatch, RecordBatchReader, or URI
    Path pointing to a single file:
        Open a FileSystemDataset from a single file.
    Path pointing to a directory:
        The directory gets discovered recursively according to a
        partitioning scheme if given.
    List of file paths:
        Create a FileSystemDataset from explicitly given files. The files
        must be located on the same filesystem given by the filesystem
        parameter.
        Note that in contrary of construction from a single file, passing
        URIs as paths is not allowed.
    List of datasets:
        A nested UnionDataset gets constructed, it allows arbitrary
        composition of other datasets.
        Note that additional keyword arguments are not allowed.
    (List of) batches or tables, iterable of batches, or RecordBatchReader:
        Create an InMemoryDataset. If an iterable or empty list is given,
        a schema must also be given. If an iterable or RecordBatchReader
        is given, the resulting dataset can only be scanned once; further
        attempts will raise an error.
schema : Schema, optional
    Optionally provide the Schema for the Dataset, in which case it will
    not be inferred from the source.
format : FileFormat or str
    Currently "parquet", "ipc"/"arrow"/"feather", "csv", "json", and "orc" are
    supported. For Feather, only version 2 files are supported.
filesystem : FileSystem or URI string, default None
    If a single path is given as source and filesystem is None, then the
    filesystem will be inferred from the path.
    If an URI string is passed, then a filesystem object is constructed
    using the URI's optional path component as a directory prefix. See the
    examples below.
    Note that the URIs on Windows must follow 'file:///C:...' or
    'file:/C:...' patterns.
partitioning : Partitioning, PartitioningFactory, str, list of str
    The partitioning scheme specified with the ``partitioning()``
    function. A flavor string can be used as shortcut, and with a list of
    field names a DirectoryPartitioning will be inferred.
partition_base_dir : str, optional
    For the purposes of applying the partitioning, paths will be
    stripped of the partition_base_dir. Files not matching the
    partition_base_dir prefix will be skipped for partitioning discovery.
    The ignored files will still be part of the Dataset, but will not
    have partition information.
exclude_invalid_files : bool, optional (default True)
    If True, invalid files will be excluded (file format specific check).
    This will incur IO for each files in a serial and single threaded
    fashion. Disabling this feature will skip the IO, but unsupported
    files may be present in the Dataset (resulting in an error at scan
    time).
ignore_prefixes : list, optional
    Files matching any of these prefixes will be ignored by the
    discovery process. This is matched to the basename of a path.
    By default this is ['.', '_'].
    Note that discovery happens only if a directory is passed as source.

Returns
-------
dataset : Dataset
    Either a FileSystemDataset or a UnionDataset depending on the source
    parameter.

Examples
--------
Creating an example Table:

>>> import pyarrow as pa
>>> import pyarrow.parquet as pq
>>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021],
...                   'n_legs': [2, 2, 4, 4, 5, 100],
...                   'animal': ["Flamingo", "Parrot", "Dog", "Horse",
...                              "Brittle stars", "Centipede"]})
>>> pq.write_table(table, "file.parquet")

Opening a single file:

>>> import pyarrow.dataset as ds
>>> dataset = ds.dataset("file.parquet", format="parquet")
>>> dataset.to_table()
pyarrow.Table
year: int64
n_legs: int64
animal: string
----
year: [[2020,2022,2021,2022,2019,2021]]
n_legs: [[2,2,4,4,5,100]]
animal: [["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]]

Opening a single file with an explicit schema:

>>> myschema = pa.schema([
...     ('n_legs', pa.int64()),
...     ('animal', pa.string())])
>>> dataset = ds.dataset("file.parquet", schema=myschema, format="parquet")
>>> dataset.to_table()
pyarrow.Table
n_legs: int64
animal: string
----
n_legs: [[2,2,4,4,5,100]]
animal: [["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]]

Opening a dataset for a single directory:

>>> ds.write_dataset(table, "partitioned_dataset", format="parquet",
...                  partitioning=['year'])
>>> dataset = ds.dataset("partitioned_dataset", format="parquet")
>>> dataset.to_table()
pyarrow.Table
n_legs: int64
animal: string
----
n_legs: [[5],[2],[4,100],[2,4]]
animal: [["Brittle stars"],["Flamingo"],...["Parrot","Horse"]]

For a single directory from a S3 bucket:

>>> ds.dataset("s3://mybucket/nyc-taxi/",
...            format="parquet") # doctest: +SKIP

Opening a dataset from a list of relatives local paths:

>>> dataset = ds.dataset([
...     "partitioned_dataset/2019/part-0.parquet",
...     "partitioned_dataset/2020/part-0.parquet",
...     "partitioned_dataset/2021/part-0.parquet",
... ], format='parquet')
>>> dataset.to_table()
pyarrow.Table
n_legs: int64
animal: string
----
n_legs: [[5],[2],[4,100]]
animal: [["Brittle stars"],["Flamingo"],["Dog","Centipede"]]

With filesystem provided:

>>> paths = [
...     'part0/data.parquet',
...     'part1/data.parquet',
...     'part3/data.parquet',
... ]
>>> ds.dataset(paths, filesystem='file:///directory/prefix,
...            format='parquet') # doctest: +SKIP

Which is equivalent with:

>>> fs = SubTreeFileSystem("/directory/prefix",
...                        LocalFileSystem()) # doctest: +SKIP
>>> ds.dataset(paths, filesystem=fs, format='parquet') # doctest: +SKIP

With a remote filesystem URI:

>>> paths = [
...     'nested/directory/part0/data.parquet',
...     'nested/directory/part1/data.parquet',
...     'nested/directory/part3/data.parquet',
... ]
>>> ds.dataset(paths, filesystem='s3://bucket/',
...            format='parquet') # doctest: +SKIP

Similarly to the local example, the directory prefix may be included in the
filesystem URI:

>>> ds.dataset(paths, filesystem='s3://bucket/nested/directory',
...         format='parquet') # doctest: +SKIP

Construction of a nested dataset:

>>> ds.dataset([
...     dataset("s3://old-taxi-data", format="parquet"),
...     dataset("local/path/to/data", format="ipc")
... ]) # doctest: +SKIP
r   )r   )rB   rq   rO   r:   r   r   r   c              3   `   >#    U  H#  n[        U5      =(       d    [        UT5      v   M%     g 7fr   )r   rG   )r   elemr   s     r<   r   dataset.<locals>.<genexpr>  s%     TVT}T"@jx&@@Vs   +.c              3   B   #    U  H  n[        U[        5      v   M     g 7fr   )rG   r
   r   r   s     r<   r   r     s     >vtD'**vs   c              3   v   #    U  H/  n[        U[        R                  [        R                  45      v   M1     g 7fr   )rG   rJ   RecordBatchTabler   s     r<   r   r      s.      %#T D2>>288"<==#s   79c              3   L   #    U  H  n[        U5      R                  v   M     g 7fr   )rI   __name__r   s     r<   r   r   $  s     FvttDz22vs   "$z, c              3   D   #    U  H  nS R                  U5      v   M     g7f)z{}N)r:   )r   ts     r<   r   r   %  s     "H<a4;;q>><s    zExpected a list of path-like or dataset objects, or a list of batches or tables. The given list contains the following types: {}z\Expected a path-like, list of path-likes or a list of Datasets instead of the given type: {})re   r   dictr   r   rG   r   rH   allr   r   setjoin	TypeErrorr:   rJ   r   r   rI   r   )r   rB   r:   rq   rO   r   r   ignore_prefixesr   unique_types
type_namesr   s              @r<   datasetr   H  sT   J $!-3!0F V"64V44	FUDM	*	*TVTTT&v888>v>>>!&3F33 %#% % %%f777FvFFL"H<"HHJ"F:. 
 
FR^^RXX6	7	7!&3F33,,2F4<3H3H,I
 	
r>   c           
         [        U [        5      (       a  [        S5      e[        U [        5      (       a  U(       a  [        S5      e[        U [        [
        45      (       a>  [        [        R                  " U  Vs/ s H  o1R                  U5      PM     sn5      US9n O!U c  [        [        R                  " / 5      US9n [        U [        5      (       d  [        S5      eU $ s  snf )NzhA PartitioningFactory cannot be used. Did you call the partitioning function without supplying a schema?zKProviding a partitioning_flavor with a Partitioning object is not supportedrB   rM   rQ   zDpartitioning must be a Partitioning object or a list of column names)
rG   r   rE   r   r   rH   rO   rJ   rB   r'   )partrB   rM   fs       r<   _ensure_write_partitioningr   4  s    $+,, 7 8 	8 $%%&5
 	
 
D5$-	(	( 99t<t!ll1ot<=
 
BIIbM&9dL))%
 	

 K =s   <C$error)basename_templater:   rO   partitioning_flavorrB   rq   file_optionsuse_threadsmax_partitionsmax_open_filesmax_rows_per_filemin_rows_per_groupmax_rows_per_groupfile_visitorexisting_data_behavior
create_dirc                x   SSK Jn  [        U [        [        45      (       a"  U=(       d    U S   R
                  n[        XS9n O[        U [        R                  [        R                  45      (       a  U=(       d    U R
                  n[        XS9n O[        U [        R                  R                  5      (       d!  [        U S5      (       d  [        U 5      (       a  [        R                  " XS9n SnO&[        U [         [        45      (       d  [#        S5      eUc"  [        U [$        5      (       a  U R&                  nO[)        U5      nUc  UR+                  5       nX8R&                  :w  a  [-        SR'                  X85      5      eUc  SUR.                  -   nU
c  S	n
Uc  S	nUc  SnUc  S
nUc  Sn[        U [        5      (       a  U R0                  nOU R
                  n[3        UUUS9nU" X5      u  pq[        U [         5      (       a  U R5                  U	S9nOUb  [#        S5      eU n[7        UXXtXUUXXU5        g)a%  
Write a dataset to a given format and partitioning.

Parameters
----------
data : Dataset, Table/RecordBatch, RecordBatchReader, list of Table/RecordBatch, or iterable of RecordBatch
    The data to write. This can be a Dataset instance or
    in-memory Arrow data. If an iterable is given, the schema must
    also be given.
base_dir : str
    The root directory where to write the dataset.
basename_template : str, optional
    A template string used to generate basenames of written data files.
    The token '{i}' will be replaced with an automatically incremented
    integer. If not specified, it defaults to
    "part-{i}." + format.default_extname
format : FileFormat or str
    The format in which to write the dataset. Currently supported:
    "parquet", "ipc"/"arrow"/"feather", and "csv". If a FileSystemDataset
    is being written and `format` is not specified, it defaults to the
    same format as the specified FileSystemDataset. When writing a
    Table or RecordBatch, this keyword is required.
partitioning : Partitioning or list[str], optional
    The partitioning scheme specified with the ``partitioning()``
    function or a list of field names. When providing a list of
    field names, you can use ``partitioning_flavor`` to drive which
    partitioning type should be used.
partitioning_flavor : str, optional
    One of the partitioning flavors supported by
    ``pyarrow.dataset.partitioning``. If omitted will use the
    default of ``partitioning()`` which is directory partitioning.
schema : Schema, optional
filesystem : FileSystem, optional
file_options : pyarrow.dataset.FileWriteOptions, optional
    FileFormat specific write options, created using the
    ``FileFormat.make_write_options()`` function.
use_threads : bool, default True
    Write files in parallel. If enabled, then maximum parallelism will be
    used determined by the number of available CPU cores.
max_partitions : int, default 1024
    Maximum number of partitions any batch may be written into.
max_open_files : int, default 1024
    If greater than 0 then this will limit the maximum number of
    files that can be left open. If an attempt is made to open
    too many files then the least recently used file will be closed.
    If this setting is set too low you may end up fragmenting your
    data into many small files.
max_rows_per_file : int, default 0
    Maximum number of rows per file. If greater than 0 then this will
    limit how many rows are placed in any single file. Otherwise there
    will be no limit and one file will be created in each output
    directory unless files need to be closed to respect max_open_files
min_rows_per_group : int, default 0
    Minimum number of rows per group. When the value is greater than 0,
    the dataset writer will batch incoming data and only write the row
    groups to the disk when sufficient rows have accumulated.
max_rows_per_group : int, default 1024 * 1024
    Maximum number of rows per group. If the value is greater than 0,
    then the dataset writer may split up large incoming batches into
    multiple row groups.  If this value is set, then min_rows_per_group
    should also be set. Otherwise it could end up with very small row
    groups.
file_visitor : function
    If set, this function will be called with a WrittenFile instance
    for each file created during the call.  This object will have both
    a path attribute and a metadata attribute.

    The path attribute will be a string containing the path to
    the created file.

    The metadata attribute will be the parquet metadata of the file.
    This metadata will have the file path attribute set and can be used
    to build a _metadata file.  The metadata attribute will be None if
    the format is not parquet.

    Example visitor which simple collects the filenames created::

        visited_paths = []

        def file_visitor(written_file):
            visited_paths.append(written_file.path)
existing_data_behavior : 'error' | 'overwrite_or_ignore' | 'delete_matching'
    Controls how the dataset will handle data that already exists in
    the destination.  The default behavior ('error') is to raise an error
    if any data exists in the destination.

    'overwrite_or_ignore' will ignore any existing data and will
    overwrite files with the same name as an output file.  Other
    existing files will be ignored.  This behavior, in combination
    with a unique basename_template for each write, will allow for
    an append workflow.

    'delete_matching' is useful when you are writing a partitioned
    dataset.  The first time each partition directory is encountered
    the entire directory will be deleted.  This allows you to overwrite
    old partitions completely.
create_dir : bool, default True
    If False, directories will not be created.  This can be useful for
    filesystems that do not require directories.
r   )ry   rA   __arrow_c_stream__NzOnly Dataset, Scanner, Table/RecordBatch, RecordBatchReader, a list of Tables/RecordBatches, or iterable of batches are supported.zTSupplied FileWriteOptions have format {}, which doesn't match supplied FileFormat {}z	part-{i}.i   i   r   )r   z.Cannot specify a schema when writing a Scanner)re   ry   rG   rH   r   rB   r   rJ   r   r   rW   RecordBatchReaderhasattrr   r   from_batchesr
   rE   r   r:   r^   make_write_optionsr   default_extnameprojected_schemar   scannerr#   )database_dirr   r:   rO   r   rB   rq   r   r   r   r   r   r   r   r   r   r   ry   partitioning_schemar   s                        r<   write_datasetr   R  s'   Z 8$u&&)47>>t3	D2>>2884	5	5&4;;t3411224-..##D8w011
 	
 ~*T+<=='002$$$ EEKV"F23 	3  '&*@*@@ !$!
 $  "33"kk-l5H5HJL 8MJ$  ,,;,7 MNNjl4J
	r>   )NNNNr   )NNNNNNN)NNNNN)M__doc__pyarrowrJ   pyarrow.utilr   r   r   pyarrow._datasetr   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   _get_partition_keysr#   r5   excrR   pyarrow.computer%   r&   r'   r4   r6   pyarrow._dataset_orcr(   r7   r8   pyarrow._dataset_parquetr)   r*   r+   r,   r-   r.   r/   r0   #pyarrow._dataset_parquet_encryptionr1   r2   r=   rO   rT   r^   rv   r}   r   r   r   r   r   r   r   r   r>   r<   <module>r      s  $ L  E E%                 N 6 5  	
	2N   
		 	 	 
		 8<"\/~(E.IX,)^ 9=26GK15("V+*2 IM:><"~ :>268<i
X< 8<D#d!$!%d$(T%))0T}s  

LSQTXJVWX$  		*  		  		sN   AC% #D 0D D %D+C>>DDDDDD'&D'