
    Lg[                     >   S SK JrJrJrJrJrJrJrJrJ	r	J
r
JrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJrJ r J!r!J"r"J#r#J$r$J%r%J&r&J'r'J(r(J)r)J*r*J+r+J,r,J-r-J.r.J/r/J0r0J1r1J2r2J3r3J4r4J5r5J6r6J7r7J8r8J9r9J:r:J;r;J<r<J=r=J>r>J?r?J@r@JArAJBrBJCrCJDrDJErEJFrFJGrGJHrH  S SKIJJrJ  S SKKrKS SKLJMrM  S SKNrNS SKOrPS SKOJQrQ  S SKRJSrS  S rT\J" SS	5      rUS
 rVS rWS rXS rYS rZS r[S r\S r]\]" 5         S S jr^S!SS.S jjr_SSS.S jr`S raS"SS.S jjrbS"SS.S jjrcSSSS.S jrdS reS rfg)#    )HFunctionFunctionOptionsFunctionRegistryHashAggregateFunctionHashAggregateKernelKernelScalarAggregateFunctionScalarAggregateKernelScalarFunctionScalarKernelVectorFunctionVectorKernelArraySortOptionsAssumeTimezoneOptionsCastOptionsCountOptionsCumulativeOptionsCumulativeSumOptionsDayOfWeekOptionsDictionaryEncodeOptionsRunEndEncodeOptionsElementWiseAggregateOptionsExtractRegexOptionsFilterOptionsIndexOptionsJoinOptionsListSliceOptionsListFlattenOptionsMakeStructOptionsMapLookupOptionsMatchSubstringOptionsModeOptionsNullOptions
PadOptionsPairwiseOptionsPartitionNthOptionsQuantileOptionsRandomOptionsRankOptionsReplaceSliceOptionsReplaceSubstringOptionsRoundBinaryOptionsRoundOptionsRoundTemporalOptionsRoundToMultipleOptionsScalarAggregateOptionsSelectKOptionsSetLookupOptionsSliceOptionsSortOptionsSplitOptionsSplitPatternOptionsStrftimeOptionsStrptimeOptionsStructFieldOptionsTakeOptionsTDigestOptionsTrimOptionsUtf8NormalizeOptionsVarianceOptionsWeekOptionscall_functionfunction_registryget_functionlist_functionscall_tabular_functionregister_scalar_functionregister_tabular_functionregister_aggregate_functionregister_vector_function
UdfContext
Expression)
namedtupleN)dedent)_compute_docstrings)	docscrapec                 .    U R                   R                  $ N)_doc	arg_names)funcs    /lib/python3.12/site-packages/pyarrow/compute.py_get_arg_namesrU   k   s    99    _OptionsClassDoc)paramsc                     U R                   (       d  g [        R                  " U R                   5      n[        US   5      $ )N
Parameters)__doc__rN   NumpyDocStringrW   )options_classdocs     rT   _scrape_options_class_docr_   r   s4      

"
"=#8#8
9CC-..rV   c           	      ,   UR                   n[        UR                  UR                  UR                  UR
                  S9U l        Xl        Xl        / nUR                  nU(       d0  UR                  S:  a  SOSnSR                  UR                  U5      nUR                  U S35        UR                  nU(       a  UR                  U S35        [        R                  R                  UR                  5      n	UR                  [!        S5      5        [#        U5      n
U
 H@  nUR$                  S	;   a  S
nOSnUR                  U SU S35        UR                  S5        MB     UGb?  ['        U5      nU(       ag  UR(                   HV  nUR                  UR                   SUR*                   S35        UR,                   H  nUR                  SU S35        M     MX     O[.        R0                  " SUR                   S3[2        5        [4        R6                  " U5      nUR8                  R;                  5        HA  nUR                  [!        SR                  UR                  UR                  5      5      5        MC     UR                  [!        SUR                   S35      5        UR                  [!        S5      5        U	b8  UR                  SR                  [!        U	5      R=                  S5      5      5        SR?                  U5      U l         U $ )N)namearityr]   options_required   	argumentsargumentz,Call compute function {!r} with the given {}z.

z

z.        Parameters
        ----------
        )vectorscalar_aggregatez
Array-likezArray-like or scalar-likez : 
z"    Argument to compute function.
z    zOptions class z does not have a docstringz                {0} : optional
                    Parameter for {1} constructor. Either `options`
                    or `{0}` can be passed, but not both at the same time.
                z&            options : pyarrow.compute.zK, optional
                Alternative way of passing options.
            z        memory_pool : pyarrow.MemoryPool, optional
            If not passed, will allocate memory from the default memory pool.
        z
{}
 )!rQ   dictra   rb   r]   rc   __arrow_compute_function____name____qualname__summaryformatappenddescriptionrM   function_doc_additionsgetrL   rU   kindr_   rX   typedescwarningswarnRuntimeWarninginspect	signature
parametersvaluesstripjoinr[   )wrapperexposed_namerS   r]   cpp_doc
doc_piecesro   arg_strrr   doc_additionrR   arg_namearg_typeoptions_class_docpsoptions_sigs                    rT   _decorate_compute_functionr   y   s    iiG)-YYjj++ 11	*3G&
 $'J ooG!%a+ZAF499g. 	 	'( %%K[M./&==AA$))LL f    t$I9966#H2HXJc(267?@   5mD&--!!QVVHCxr":;A%%QCrl3   .
 MMN=+A+A*B C6 78FH!++M:K ++224!!& * F166=#9#9:	#< = 5 	& &''4'='=&> ?"  	
 f    (//&*>*D*DT*JKLggj)GONrV   c                     U R                   R                  nU(       d  g  [        5       U   $ ! [         a-    [        R
                  " SR                  U5      [        5         g f = f)Nz!Python binding for {} not exposed)rQ   r]   globalsKeyErrorrx   ry   rp   rz   )rS   
class_names     rT   _get_options_classr      sV    ((Jy$$ 9vj)>	;s   - 4A$#A$c           	         U(       d  U(       a%  Ub  [        SR                  U 5      5      eU" U0 UD6$ UbS  [        U[        5      (       a  U" S0 UD6$ [        X!5      (       a  U$ [        SR                  X[	        U5      5      5      eg )NzMFunction {!r} called with both an 'options' argument and additional argumentsz-Function {!r} expected a {} parameter, got {} )	TypeErrorrp   
isinstancerk   rv   )ra   r]   optionsargskwargss        rT   _handle_optionsr      s    v+  d-f--gt$$ +7++//N;VDg79 	9 rV   c                 L   ^ ^^^ Tc  S S.UUU 4S jjnU$ S S S.UUU U4S jjnU$ )Nmemory_poolc           	        > T[         La,  [        U5      T:w  a  [        T ST S[        U5       S35      eU(       a8  [        US   [        5      (       a   [        R
                  " T[        U5      5      $ TR                  US U 5      $ )N takes  positional argument(s), but  were givenr   )Ellipsislenr   r   rJ   _calllistcall)r   r   rb   rS   	func_names     rT   r   &_make_generic_wrapper.<locals>.wrapper   s    H$Te); k 0t9+[2  
47J77!''	4:>>99T455rV   )r   r   c           	      H  > T[         La7  [        U5      T:  a  [        T ST S[        U5       S35      eUTS  nUS T nOSn[        TTUXC5      nU(       a9  [	        US   [
        5      (       a!  [
        R                  " T[        U5      U5      $ TR                  X!U 5      $ )Nr   r   r   r   r   )	r   r   r   r   r   rJ   r   r   r   )	r   r   r   r   option_argsrb   rS   r   r]   s	        rT   r   r      s    H$t9u$#$+WUG 4"4yk6  #56lFU| %i&1;G
47J77!''	4:wGG99TK88rV   r   )r   rS   r]   rb   r   s   ```` rT   _make_generic_wrapperr      s5    '+ 	6 	64 N! (,T 	9 	9  NrV   c                    SSK Jn  / nU  H$  nUR                  U" XSR                  5      5        M&     U H$  nUR                  U" XSR                  5      5        M&     Ub  [         R
                  " U5      nUR                  R                  5        H\  nUR                  UR                  UR                  4;   d   eU(       a  UR                  UR                  S9nUR                  U5        M^     UR                  U" SUR                  S S95        UR                  U" SUR                  S S95        [         R                  " U5      $ )Nr   )	Parameter)ru   r   )defaultr   )r{   r   rq   POSITIONAL_ONLYVAR_POSITIONALr|   r}   r~   ru   POSITIONAL_OR_KEYWORDKEYWORD_ONLYreplace	Signature)rR   var_arg_namesr]   r   rX   ra   r   r   s           rT   _make_signaturer     s   !Fi&?&?@A i&>&>?@  ''6''..0A66i=='446 6 6 6II9#9#9I:MM! 1 	i	9+A+A(,. 	/
MM)M9+A+A$(* +V$$rV   c                    [        U5      n[        U5      nU=(       a    US   R                  S5      nU(       a!  UR                  5       R	                  S5      /nO/ n[        XX!R                  S9n[        X5U5      Ul        [        X`X5      $ )N*)rb   )
r   rU   
startswithpoplstripr   rb   r   __signature__r   )ra   rS   r]   rR   
has_varargr   r   s          rT   _wrap_functionr   #  s    &t,Mt$I<y}77<J"//45#M5G+I,9;G%gTIIrV   c                  J   [        5       n [        5       nSSS.nUR                  5        Hv  nUR                  X35      nUR	                  U5      nUR
                  S:X  a  M7  UR
                  S:X  a  UR                  S:X  a  MY  X@;  d   U5       e[        XE5      =X'   X'   Mx     g)z
Make global functions wrapping each compute function.

Note that some of the automatically-generated wrappers may be overridden
by custom versions below.
and_or_)andorhash_aggregaterh   r   N)r   rA   rC   rt   rB   ru   rb   r   )gregrewritescpp_namera   rS   s         rT   _make_global_functionsr   3  s     		A

C H &&(||H/)99(( 99**tzzQ }"d"} .t ::ag )rV   c                 "   USL=(       d    USLnU(       a  Ub  [        S5      eUc[  [        R                  R                  R	                  U5      nUSL a  [
        R                  " U5      nO[
        R                  " U5      n[        SU /X45      $ )a  
Cast array values to another data type. Can also be invoked as an array
instance method.

Parameters
----------
arr : Array-like
target_type : DataType or str
    Type to cast to
safe : bool, default True
    Check for overflows or other unsafe conversions
options : CastOptions, default None
    Additional checks pass by CastOptions
memory_pool : MemoryPool, optional
    memory pool to use for allocations during function execution.

Examples
--------
>>> from datetime import datetime
>>> import pyarrow as pa
>>> arr = pa.array([datetime(2010, 1, 1), datetime(2015, 1, 1)])
>>> arr.type
TimestampType(timestamp[us])

You can use ``pyarrow.DataType`` objects to specify the target type:

>>> cast(arr, pa.timestamp('ms'))
<pyarrow.lib.TimestampArray object at ...>
[
  2010-01-01 00:00:00.000,
  2015-01-01 00:00:00.000
]

>>> cast(arr, pa.timestamp('ms')).type
TimestampType(timestamp[ms])

Alternatively, it is also supported to use the string aliases for these
types:

>>> arr.cast('timestamp[ms]')
<pyarrow.lib.TimestampArray object at ...>
[
  2010-01-01 00:00:00.000,
  2015-01-01 00:00:00.000
]
>>> arr.cast('timestamp[ms]').type
TimestampType(timestamp[ms])

Returns
-------
casted : Array
    The cast result as a new Array
NzRMust either pass values for 'target_type' and 'safe' or pass a value for 'options'Fcast)	
ValueErrorpatypeslibensure_typer   unsafesafer@   )arrtarget_typer   r   r   safe_vars_passeds         rT   r   r   S  s    l D(Fk.EW0 : ; 	; hhll..{;5=!((5G!&&{3G#==rV   r   c                b   Ub*  Ub  U R                  X#U-
  5      n O'U R                  U5      n OUb  U R                  SU5      n [        U[        R                  5      (       d  [        R                  " XR
                  S9nOGU R
                  UR
                  :w  a-  [        R                  " UR                  5       U R
                  S9n[        US9n[        SU /XT5      nUbM  UR                  5       S:  a9  [        R                  " UR                  5       U-   [        R                  " 5       S9nU$ )a  
Find the index of the first occurrence of a given value.

Parameters
----------
data : Array-like
value : Scalar-like object
    The value to search for.
start : int, optional
end : int, optional
memory_pool : MemoryPool, optional
    If not passed, will allocate memory from the default memory pool.

Returns
-------
index : int
    the index, or -1 if not found

Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr = pa.array(["Lorem", "ipsum", "dolor", "sit", "Lorem", "ipsum"])
>>> pc.index(arr, "ipsum")
<pyarrow.Int64Scalar: 1>
>>> pc.index(arr, "ipsum", start=2)
<pyarrow.Int64Scalar: 5>
>>> pc.index(arr, "amet")
<pyarrow.Int64Scalar: -1>
r   rv   valueindex)
slicer   r   Scalarscalarrv   as_pyr   r@   int64)datar   startendr   r   results          rT   r   r     s    > ?::e5[1D::e$D	zz!S!eRYY''		%ii0	ejj	 		%++-dii8'G7TFGAFV\\^q06<<>E1
CMrV   T)boundscheckr   c                0    [        US9n[        SX/XC5      $ )a  
Select values (or records) from array- or table-like data given integer
selection indices.

The result will be of the same type(s) as the input, with elements taken
from the input array (or record batch / table fields) at the given
indices. If an index is null then the corresponding value in the output
will be null.

Parameters
----------
data : Array, ChunkedArray, RecordBatch, or Table
indices : Array, ChunkedArray
    Must be of integer type
boundscheck : boolean, default True
    Whether to boundscheck the indices. If False and there is an out of
    bounds index, will likely cause the process to crash.
memory_pool : MemoryPool, optional
    If not passed, will allocate memory from the default memory pool.

Returns
-------
result : depends on inputs
    Selected values for the given indices

Examples
--------
>>> import pyarrow as pa
>>> arr = pa.array(["a", "b", "c", None, "e", "f"])
>>> indices = pa.array([0, None, 4, 3])
>>> arr.take(indices)
<pyarrow.lib.StringArray object at ...>
[
  "a",
  null,
  "e",
  null
]
)r   take)r:   r@   )r   indicesr   r   r   s        rT   r   r     s     P k2G$'GGrV   c                 d   [        U[        R                  [        R                  [        R                  45      (       d  [        R
                  " XR                  S9nOGU R                  UR                  :w  a-  [        R
                  " UR                  5       U R                  S9n[        SX/5      $ )a  Replace each null element in values with a corresponding
element from fill_value.

If fill_value is scalar-like, then every null element in values
will be replaced with fill_value. If fill_value is array-like,
then the i-th element in values will be replaced with the i-th
element in fill_value.

The fill_value's type must be the same as that of values, or it
must be able to be implicitly casted to the array's type.

This is an alias for :func:`coalesce`.

Parameters
----------
values : Array, ChunkedArray, or Scalar-like object
    Each null element is replaced with the corresponding value
    from fill_value.
fill_value : Array, ChunkedArray, or Scalar-like object
    If not same type as values, will attempt to cast.

Returns
-------
result : depends on inputs
    Values with all null elements replaced

Examples
--------
>>> import pyarrow as pa
>>> arr = pa.array([1, 2, None, 3], type=pa.int8())
>>> fill_value = pa.scalar(5, type=pa.int8())
>>> arr.fill_null(fill_value)
<pyarrow.lib.Int8Array object at ...>
[
  1,
  2,
  5,
  3
]
>>> arr = pa.array([1, 2, None, 4, None])
>>> arr.fill_null(pa.array([10, 20, 30, 40, 50]))
<pyarrow.lib.Int64Array object at ...>
[
  1,
  2,
  30,
  4,
  50
]
r   coalesce)	r   r   ArrayChunkedArrayr   r   rv   r   r@   )r~   
fill_values     rT   	fill_nullr     st    f j288R__bii"HIIYYz<
	
	'YYz//1D
f%9::rV   c                    Uc  / n[        U [        R                  [        R                  45      (       a  UR	                  S5        O[        S U5      n[        X5      n[        SU /XC5      $ )a<  
Select the indices of the top-k ordered elements from array- or table-like
data.

This is a specialization for :func:`select_k_unstable`. Output is not
guaranteed to be stable.

Parameters
----------
values : Array, ChunkedArray, RecordBatch, or Table
    Data to sort and get top indices from.
k : int
    The number of `k` elements to keep.
sort_keys : List-like
    Column key names to order by when input is table-like data.
memory_pool : MemoryPool, optional
    If not passed, will allocate memory from the default memory pool.

Returns
-------
result : Array
    Indices of the top-k ordered elements

Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr = pa.array(["a", "b", "c", None, "e", "f"])
>>> pc.top_k_unstable(arr, k=3)
<pyarrow.lib.UInt64Array object at ...>
[
  5,
  4,
  2
]
)dummy
descendingc                 
    U S4$ )Nr   r   key_names    rT   <lambda> top_k_unstable.<locals>.<lambda>[  s	    (L)ArV   select_k_unstabler   r   r   r   rq   mapr1   r@   r~   k	sort_keysr   r   s        rT   top_k_unstabler   1  sb    J 	&288R__56601A9M	Q*G,vhMMrV   c                    Uc  / n[        U [        R                  [        R                  45      (       a  UR	                  S5        O[        S U5      n[        X5      n[        SU /XC5      $ )aS  
Select the indices of the bottom-k ordered elements from
array- or table-like data.

This is a specialization for :func:`select_k_unstable`. Output is not
guaranteed to be stable.

Parameters
----------
values : Array, ChunkedArray, RecordBatch, or Table
    Data to sort and get bottom indices from.
k : int
    The number of `k` elements to keep.
sort_keys : List-like
    Column key names to order by when input is table-like data.
memory_pool : MemoryPool, optional
    If not passed, will allocate memory from the default memory pool.

Returns
-------
result : Array of indices
    Indices of the bottom-k ordered elements

Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> arr = pa.array(["a", "b", "c", None, "e", "f"])
>>> pc.bottom_k_unstable(arr, k=3)
<pyarrow.lib.UInt64Array object at ...>
[
  0,
  1,
  2
]
)r   	ascendingc                 
    U S4$ )Nr   r   r   s    rT   r   #bottom_k_unstable.<locals>.<lambda>  s	    (K)@rV   r   r   r   s        rT   bottom_k_unstabler  `  sb    J 	&288R__566/0@)L	Q*G,vhMMrV   system)initializerr   r   c                ,    [        US9n[        S/ X#U S9$ )a  
Generate numbers in the range [0, 1).

Generated values are uniformly-distributed, double-precision
in range [0, 1). Algorithm and seed can be changed via RandomOptions.

Parameters
----------
n : int
    Number of values to generate, must be greater than or equal to 0
initializer : int or str
    How to initialize the underlying random generator.
    If an integer is given, it is used as a seed.
    If "system" is given, the random generator is initialized with
    a system-specific source of (hopefully true) randomness.
    Other values are invalid.
options : pyarrow.compute.RandomOptions, optional
    Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
    If not passed, will allocate memory from the default memory pool.
)r  random)length)r(   r@   )nr  r   r   s       rT   r  r    s    , 4G2wAFFrV   c                  T   [        U 5      nUS:X  a  [        U S   [        [        45      (       a  [        R
                  " U S   5      $ [        U S   [        5      (       a  [        R                  " U S   5      $ [        S[        U S   5       35      e[        R                  " U 5      $ )a  Reference a column of the dataset.

Stores only the field's name. Type and other information is known only when
the expression is bound to a dataset having an explicit scheme.

Nested references are allowed by passing multiple names or a tuple of
names. For example ``('foo', 'bar')`` references the field named "bar"
inside the field named "foo".

Parameters
----------
*name_or_index : string, multiple strings, tuple or int
    The name or index of the (possibly nested) field the expression
    references to.

Returns
-------
field_expr : Expression
    Reference to the given field

Examples
--------
>>> import pyarrow.compute as pc
>>> pc.field("a")
<pyarrow.compute.Expression a>
>>> pc.field(1)
<pyarrow.compute.Expression FieldPath(1)>
>>> pc.field(("a", "b"))
<pyarrow.compute.Expression FieldRef.Nested(FieldRef.Name(a) ...
>>> pc.field("a", "b")
<pyarrow.compute.Expression FieldRef.Nested(FieldRef.Name(a) ...
rd   r   zCfield reference should be str, multiple str, tuple or integer, got )
r   r   strintrJ   _fieldtuple_nested_fieldr   rv   )name_or_indexr  s     rT   fieldr    s    B 	MAAvmA&c
33$$]1%566a(%00++M!,<==  $]1%5 679  ''66rV   c                 .    [         R                  " U 5      $ )a  Expression representing a scalar value.

Parameters
----------
value : bool, int, float or string
    Python value of the scalar. Note that only a subset of types are
    currently supported.

Returns
-------
scalar_expr : Expression
    An Expression representing the scalar value
)rJ   _scalarr   s    rT   r   r     s     e$$rV   )NNNN)NNrP   )gpyarrow._computer   r   r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   collectionsrK   r{   textwraprL   rx   pyarrowr   rM   pyarrow.vendoredrN   rU   rW   r_   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r  r   r   rV   rT   <module>r     s7  $M M M M M M M M M M M M M M M M M M M^ #     ' & 0+> /Pf	*>%.J ;:  B>J/D /d (, )HX8;v,NT ,N^,N ,N^ &t G4.7b%rV   