import holoviews as hv
import colorcet as cc

from ..backend_transforms import _transfer_opts_cur_backend
from ..util import with_hv_extension


@with_hv_extension
def parallel_coordinates(
    data,
    class_column,
    cols=None,
    alpha=0.5,
    width=600,
    height=300,
    var_name='variable',
    value_name='value',
    cmap=None,
    colormap=None,
    **kwds,
):
    """
    Parallel coordinates plotting.

    To show a set of points in an n-dimensional space, a backdrop is drawn
    consisting of n parallel lines. A point in n-dimensional space is
    represented as a polyline with vertices on the parallel axes; the
    position of the vertex on the i-th axis corresponds to the i-th coordinate
    of the point.

    Parameters
    ----------
    frame: DataFrame
    class_column: str
        Column name containing class names
    cols: list, optional
        A list of column names to use
    alpha: float, optional
        The transparency of the lines
    cmap/colormap: str or colormap object
        Colormap to use for groups

    Returns
    -------
    obj : HoloViews object
        The HoloViews representation of the plot.

    See Also
    --------
    pandas.plotting.parallel_coordinates : matplotlib version of this routine
    """
    # Transform the dataframe to be used in Vega-Lite
    if cols is not None:
        data = data[list(cols) + [class_column]]
    cols = data.columns
    df = data.reset_index()
    index = (set(df.columns) - set(cols)).pop()
    assert index in df.columns
    df = df.melt([index, class_column], var_name=var_name, value_name=value_name)

    labelled = [] if var_name == 'variable' else ['x']
    if value_name != 'value':
        labelled.append('y')
    options = {
        'Curve': dict(kwds, labelled=labelled, alpha=alpha, width=width, height=height),
        'Overlay': dict(legend_limit=5000),
    }

    dataset = hv.Dataset(df)
    groups = dataset.to(hv.Curve, var_name, value_name).overlay(index).items()

    if cmap and colormap:
        raise TypeError('Only specify one of `cmap` and `colormap`.')
    cmap = cmap or colormap or cc.palette['glasbey_category10']
    colors = hv.plotting.util.process_cmap(cmap, categorical=True, ncolors=len(groups))

    el = hv.Overlay(
        [
            curve.relabel(k).options('Curve', color=c, backend='bokeh')
            for c, (k, v) in zip(colors, groups)
            for curve in v
        ]
    ).options(options, backend='bokeh')
    el = _transfer_opts_cur_backend(el)
    return el
